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a{@/ fpecializing in Theoretical Physics. This
educational material contains the basic e aeCessary for learning the subject "Quantum
Field Theory I". In addition to a detailed course, the handout contains a series of corrected
exercises, capable of introducing the student to the field of relativistic quantum mechanics. This |
work is the result of many years of research and preparation, lasting more than eight years
of hard work. Teaching the quantum field theory course since the first year of the launch of
the "Theoretical Physics" specialty within the Department of Material Sciences located at Djillali
Bounaama Khemis Miliana University (UDBKM), has allowed me to have a broader vision of the
subject, which has given me the opportunity to choose the most effective methods for transferring
my knowledge to the students.

The handout is written in accordance with the template, it offers students the opportunity to
deepen their previously acquired knowledge in the field of both quantum mechanics and special
relativity theories, while taking into account the contributions of*electromagnetism theory and
analytical mechanic§ theory. -

Title of the Master’s Degree : Theoretical Physics

Semester : 1

Title of UE : Fundamental UEF1.1

‘Title of the subject : Quantum Field Theory I
Credits : 6

Coefficients : 3

Educational objectives:

— Understanding the concept of global and local symmetry in quantum field theory and their
implications.

Recommended prior knowledge:

- Quantum mechanics, analytical mechanics, electromagnetism, and special relativity.
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2.1 Basic principle of quantumifi

characterize N particles, one defines N scalar fields. Consequently, the system comprising these
N fields will be represented by a Lagrangian density of the following form,

The motion of these N scalar fields will be described by the following N Euler-Lagrange equations,
oL < oL )
=— =0y | === ]=0 2.2)
a9~ \ 3. :

It is said that the scalar field ¢(x,) is a system with N degrees of freedom. According to its

definition, the scalar field represents the most straightforward scenario. Its transformation occurs

as follows, » 4}\ -

P(xu) = ¢'(x;,) | (2.3)

— The scalar field (Klein-Gordon field) is used to describe the physics of zero-spin particles
with relativistic speeds c.

— The scalar field can either be real ¢(x,) = ¢* (xu), or complex ¢(x,) # ¢* (x).

2.1.1 Free scalar field

One possible form of the Lagrangian density that must be chosen to obtain the free Klein-Gordon
equation is given by the following equation.

(a},a,, L3 m2> ¢(x,) =0 (2.4)

cle that possesses zero spin. To



\Rot singular. Our choice is as follows,

1 1
L(¢,0up, x,) = 5 (3#4’)2 = §m2¢2

Verificatiohw ce in the Euler-Lagrange equations, where ¢ =¢ = ¢*,

oL oL
achl, SR (TR0 ROCT
op <a(a}l¢)>

oL oL
ith —— = —m;? , == = —0d40.
wi a(P e a(a}l()b) Al

By substituting into equation (5.3.2), we obtain the Klein-Gordon equation

2.1.2  Free complex scalar field

(2.5)

(2.6)

2.7)

If ¢ = ¢*, what is the general form of the Lagrangian density that must be selected in order to

obtain the following two equations?

(8,,8}, — mz) ¢(xy) =0, (aya}, — mz) 4)*(&3{},) =1

Response: Our choite is the following

L(P:0ug.97,0u9", 1) = — (3u9) (3u9p*) — miPpgp”

Verification: Let’s substitute in both Euler-Lagrange equations for b = ¢, ¢*,

oL oL oL oL
s=<Ople=——le=ml), =gl Jonp
ap " (a@y«p)) dp* ¥ (a(w*))

Y Yo oL . ar
with — = —m?p, = __— _3 . = = —m?¢*, m—e—e 2= g
ST P )T T 5= gy = U

By substituting into equation (5.3.2), we obtain the following two equations,

(aya;, - mz> ¢(xy) =0, (E);,E)y - mz> ¢*(xy) =0

(2.8)

(2.9)

(2.10)

(2.11)
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2.1.3 Complex scalar field in the presence of an external electromagnetic field

two equations?
[(aﬂ —iqAy) (9 —iqAu) — mz} $(xu) =0

[(au +iqAy) (O +igAu) — ’”ZJ ¢*(xu) =0

Response: Our choice is as follows,

L($: 04, 0", 049", ) = — (9 +19Ay) ¢" (3, — 9 Ay) ¢ — m*pg* (219



A review of quantum mechanics

3.1 Introduction

Several attempts were necessary before arriving at the current formulation of quantum mechan-
ics. Specifically, in the mid-1920s, there were two competing approaches to model quantum
phenomena: that of Heisenberg, Born, Jordan, and Dirac, called the matrix mechanics, and that
of Schrodinger, called wave mechanics.

Before detailing these two theories, let us recall the essential points of classical mechanics (analyt-

ical mechanics). The latter is based on the Lagrangian formalism.

3.2 Recall the formalism of Lagrange

Lagrange’s formalism is an extremely powerful tool for describing the evolution of a physical
problem. Initially approached in the form of the principle of least action, it allows to determine
the behavior of a system as soon as the expression of a physical quantity, the Lagrangian, is
known. The aim of this reminder is to review the fundamental concepts of Lagrangian theory,

first in the context of studying a massive particle, and then in the field theory.

3.2.1 Principle of least action

Given an initial state, a physical system has an infinite number of ways to evolve towards a final

state:
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t t, t

Figure 3.1: Conversion in the space of generalized coordinates

Therefore, during a real transformation, only one of these changes (evolutions) is actually carried
out. How can we determine this preferred evolution and differentiate it from the others? This
question is answered by the principle of least action, which can be considered as one of the
postulates of physics.

According to the principle of least action, there exists a quantity called "Action" defined by,
t
S[q] = t dt L(qi(t),qi(t), t) p i=1—N 3.1)
1

The value of the system changes during its evolution and must remain minimal throughout the
actual transformation. The action S is defined as the integral of a quantity known as the "La-

grangian,” which is a function of the generalized coordinates g4 and the generalized velocities
. _dg
q(t) = -

3.2.2 Euler-Lagrange equations

Among all the paths that connect the two fixed points (dq(t;) = dq(t2) = 0) with generalized
coordinates Q1 = ¢(t1) and Qp = g(t), the physical trajectories are those that minimize the
action S, such that AS ~ 0.
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t

t

Figure 3.2: Transformation in the space of generalized coordinates

In case 6(q(t)) is a infinitesimal function, then,

Or,

AS[q] ~ S(g +dq) — S(q)

ty tr
Slal = [ “atL@.qt) = 8l = [ dHLg+0q,+64,8) = L(q,4,)
1 1

Therefore,

If we set that

We have also,

4
dt

|

oL
q

y

L(q+6q,4+d4,t) = L(q,4,t) +

ASlql =

_4
- dt

|

oL
9

/tz
5]

¢ .
f

[0+

dt [L(q, g, t) +

dq

dq

9q g

oL(9,4,t) ..]
34 6| ~0

aL(q,q,t)(s, _dLd

oL d d
8—45(54) T

ag 17 dgar

g— L(q,4,t)

(69)

y

|

dq

oL
9q

q

4
dt

|

oL
aq

}511

10

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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By substituting into equation (3.5), we find,

t2 oL d [oL d [oL
asla) = e | Soan+ 5 | 500 - 5 |55 ]

f2 oL d [dJL B2 d [oL
= e 5 = L) + i [en] ~ oo
where
b d [dL 2 [oL oL
dra | S| = [ |5 eq| = |52ea| =0 3.9
g = [ g = [ o
Finally, the Euler-Lagrange equations are expressed as
oL d (dL
— (=) = 1
dq;  dt (aqi) ’ (310

3.2.3 Lagrangian selection
The choice of the Lagrangian is not unique.
— If we replace the Lagrangian L with (aL), where « is a real number, then the equations of

motion remain unchanged.

— If we replace the Lagrangian L with (8 + L), where B is a constant, then the equations of

motion remain unchanged.
— If we replace the Lagrangian L with (L + 4F), where F = F(g,4,t) is a function, then the

equations of motion remain unchanged.

Exercice 1 :
Show that the variation AS remains invariant under the change of the Lagrangian L to L + Z—f.

3.2.4 Hamiltonian formulation

The Hamiltonian H is given by
H(p,q,t) =P, — L (3.11)

The generalized momentum is given by

P = oL (3.12)

94
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Exercice 2 :
Show that if the Lagrangian L does not explicitly depend on time t, then ‘% =0.

Solution 3:

o op Loy oLag
at ~Por % Tt agar (3.13)

Or, we have

oL oL doL

dH _ (9 (9L _OLYdg _ (3L 3 (3L\\dg _
E‘(m(aq) aq>8t_ (aq 8t(8q>)8t_0 (3.15)

3.3 Wave modeling

Therefore,

Due to the wave-like nature of matter, we need to take a closer look at what a wave is and
the appropriate method to use to mathematically model its movement in spacetime. From a
mathematical point of view, the dynamic of a wave can be described by solving the following

wave equation:
Oy =0 (3.16)
where the d’Alembertian operator is given by the expression
O:=—0dy+A
A wave will then be modeled by a function ¢, which is a solution of the equation (3.16). An
obvious solution to the equation (3.16) is the function
p(x, 1) = e ¥ ) (3.17)

where x represents the position vector, ¢t the time, k the wave vector (i.e., the wave propagation

vector), w is the wave frequency, and x - k is the dot product.
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3.4 Schrodinger equation

The idea here is to model particles in the same way as waves, namely by a function . The
probability of finding the particle at time ¢ is equal to

/ |9 (x, )| dx. (3.18)

This implies that

/RS [ (x, t)|%dx = 1. (3.19)

The fundamental principle of wave mechanics is stated as follows
The wave function ¢ of a particle with mass m moving in vacuum and subjected to no interactions

satisfies the Schrodinger equation

2
inopp = —zh—mm,u (3.20)

I is a universal constant known as the Planck constant, and A is a spatial Laplacian, with the
following sign convention:
A = 011 + 922 + 933.

The Planck constant, denoted as i, has dimensions of energy multiplied by time, or equivalently,

momentum multiplied by length. Its value is expressed in Joule-seconds:
h=1,054571628 x 10~>* |.s

The wave function 1 of a particle placed in a potential V (x, t) satisfies:

2
ihopp = —;—mmp + V. (3.21)

3.5 Harmonic oscillator

This section will be addressed as an exercise (see exercise 3).



14

3.6 Pauli equation

This section will be addressed as an exercise (see exercise 4).

3.7 Application exercises

Exercice 3 :

At time t,, the state of the one-dimensional linear harmonic oscillator system is described by
¢(x,0) = e* o(x); where ¢, (x) are the eigenfunctions of H, = hw(a™a + 1) corresponding to
the eigenvalues E, = fiw(n + 1), where n is an integer.

1. What is the normalized wave function at time #?

2. What is the probability of finding the energy E at time #?

Exercice 4 :

1. Using the product of Pauli matrices given by the formulae: c;0; = ¢;; + i’k show that
—
(@ANTB)=AB +id(AAEB)

— —
when A and B commute with .

2. Find the general form of the free Pauli equation.



A review of special relativity

4.1 Overview of the laws of electromagnetism

4.1.1 Maxwell equations

The laws of electromagnetism can be expressed as follows

— As a function of the electric field (?) and the magnetic field (§>)

%
- As a function of the vector potential ( A ) and scalar potential (¢).

Maxwell expressed the laws of electromagnetism in the form of the following four equations:

div- D =p (4.1)

div- B = (4.2)

olH = 1 + 9D 4.3)
ot

7of E = _aa_?) (4.4)

The equations (4.1), (4.3), (4.4) represent Gauss’s law, Maxwell-Ampere’s law and Lenz-Faraday’s
law respectively.

— D is the electrical displacement vector.

- ﬁ is the excitation field vector.

- p is an electrical charge density.

- j is an electric charge current.

15
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These vectors are related to the electric field E and the magnetic field B by the next equations:

D=¢F 4.5)

B =uH (4.6)

Where ¢ is the dielectric permittivity and u the magnetic permeability of the medium. In vacuum,
the equations (4.5) and (4.6) become

D=cF

D =¢, (4.7)

B
B=uH—H=_- (4.8)

Ho
Where ¢, and 1, are two constants given respectively by: &, = 8.854pFm ! and yy = 47 x

10~7 Henry /meter.
By introducing the operator ?, the previous equations become:

V.D =p 4.9)
V.B =0 (4.10)
%
VaH=7+22 @)
ot
%
0B
VAE=-S2 (4.12)
By replacing the equations (4.7) and (4.8) in the equations (4.9), (4.10), (4.11) and (4.12), we find:
?-(eoﬁ):pi?-?zeﬁ (4.13)
V.B =0 (4.14)

ﬁ
?A(£>:7+§(cﬁ):>?/\§>:y0?+yoe0£ (4.15)



17

%
VATE = —aa—]f (4.16)

The Lorentz force acting on a particle with charge g and velocity overrightarrowV is given by
F=gE+VAB) (4.17)

The charge conservation equation is given by,

— ap_
e =0 (4.18)

Ramarque:

- Maxwell’s equations and the equation for the conservation of electric charge are valid at all

points in the medium and at all times. They are, therefore, local equations.

4.1.2 Vector and scalar potentials

The magnetic field B and the electric field E are derived from the Lorentz potentials A and ¢,

where

%
F = —gradg — aa_z;x (4.19)
B —rolA (4.20)

The latter equations can be rewritten in terms of ?,

%
?:—?wp—aa—‘? (4.21)

B-=VAA (4.22)

Ramarque:

%
In vacuum, the potential vectors A and scalar ¢ satisfy the following equation:

div A + yoeog—f —0 (4.23)
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This equation is known as the Lorentz Gauge. This equation can be written as a function of ?,

VA e —o (4.24)
ot
We have,
ptoeoc2 =1=c=1/\/1o€ (4.25)

Using Maxwell’s equations and the Lorentz gauge, we obtain:

1 0%¢
Ap— 53, =0 (4.26)
_>
— 13%2A
AA = 5= =0 (4.27)

_>
Solving these two equations gives the values of the potentials ¢ and A.

4.2 Vector analysis in Minkowski space

The "quadi-nabla" operator is introduced into Minkowski’s four-dimensional space and defined

9 = (?, 13) (4.28)

as follows:

Ccot
of components,

=5, n=z, H=a, d=--= (4.29)

4.2.1 Quadri-divergence and quadri-gradient

%
Let be the quadri-vector A, with components:

%
A = (ay,ay,a;,04) = (7, ay) ou 7 = (ax,ay,az) (4.30)
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The metric of the Minkowski space is given by (+, 4+, +, —). So the scalar product of two quadri-
%
vectors A and B is given by

Ay by
— b

a b,

ag b4

0
dx Ux
0
— y vy 00y avy 00, 1 0vy
LY = . S T A A 4.32
87 % v, +ax+8y+az c ot (4.32)
o
—&ai U4
which can also be written as,
— - 19 — -  10vy
Vo= ——= - = ——— 4.
9.V (a, cat) (T, v4) (a 7, -5 (4.33)
In the same way, we define the quadri-gradient of a ¢ scalar function as,
- - 10¢
0¢ = <8 ,—Eg) (4.34)

4.2.2 Quad-vector current density

The equation (4.18) expresses the principle of conservation of charge. This equation can be written

as
dp — 0jx ajy dj. 10
e ) — Jx Yy JE L, 22 = 4.
etV T =0= ox Yoy Tz Tear ) =0 (4.35)
which can be written as:

djx . 9jy . 9jz 10 B —— _12 _
8x+8y+az (cp)=0= (0 j, . (pc) ) =0 (4.36)
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This equation appears as the quadri-divergence of a quadri-vector

- 10\ /=~ -
(8,—E§><],pc>—0=>8]—0 (4.37)

Equation (4.37) represents the writing of the charge conservation equation in Minkowski space

and the current quadri-vector is given by,
- (=
] = <] ,pc) (4.38)

4.2.3 Quad-vector potential

The Lorentz gauge given in the equation (??) can be rewritten as follows,

— 199 dA, JdA, 0A; 190 (¢ _
?~A+C—2§—0:> ax—i—ay—i-az +Eg =1=0 (4.39)

which can be written as:

0A
ox Yy 0z c cotc

This equation appears as the quadri-divergence of a quadri-vector
= =
(a,—%3> (Z,%):o: 3A =0 (4.41)
Equation (4.41) represents the writing of the Lorentz gauge in Minkowski space and the potential

A= <Z>,f> (4.42)

quadri-vector is given by,
c

4.2.4 Electromagnetic field tensor

—
The fields E and B are given as functions of the potentials ¢ and A by the two equations (4.21)
and (4.22).
Writing the equation (4.21) in three-dimensional space gives:

%
- Vo ‘"’a_‘f . (4.43)
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dp 0A,
Ey SR, (4.44)
dp JAy
Ey oy ot (4.45)
op 0A;
E, 3, T 5 (4.46)
These last equations can be rewritten in the following form:
. 9d (¢ 10Ax
d0 (¢ 10A,
Now, taking c as a factor, we find:
Ex 0 (¢ 10A,
¢ ox (c) c ot (4:50)
Ey __9(¢)_ 194y (4.51)
c dy \ c c ot '
E; 0 (¢ 10A,
T (z) <ot (4.52)
Writing the equation (4.22) in three-dimensional space gives:
B-VAA — (4.53)
_0A; 04y
By = oy oz (4.54)
By = { ox 0z ] bv="5. "o (4:55)
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0A, 0JA
y x
= — — 4.
4.2.5 Change of variable
A point in Minkowski space is represented by the quadri-vector position
4 (4.57)
z
—ct
Let’s make the following change of variables:
_ 9 _ 9 92—
X = xl dx E)x1 8x1 1
_ o0 _ 9 R
A N R e (4.58)
— ) d J _
_Ct_x4 _%m:m E—a4
Ax — Al
Ay =A
y— 2 (4.59)
A= A3
= A
The equations (4.50), (4.51), (4.52), (4.54), (4.55) and (4.56) become,
E
Tx = —01A4 + 04 A (4.60)
EV
= —0As+ %A, (4.61)
E,
— = —03A1+ 04 (4.62)

B, = 82A3 — 83A7_ (463)



B, = 334, — 91 A3

B, = 31 Ay — 024,

These six equations can be written in the following general form

F]/“/ :ayAV_aVAy, ;/l,V: 1,2,3,4

23

(4.64)

(4.65)

(4.66)

Where the coefficients F,, are the matrix elements of a tensor in Minkowski space, called the

"electromagnetic field tensor" and given by,

Fi1 Fi2 F3 Fu
F1 Fn B3 Fy

FH = (4.67)
F31 Fs» Fs3 Fa
Fyn Fp Fy3 Fy
The tensor is antisymmetric F¥ = —F# and F¥ = 0. Therefore, the matrix elements of the electro-
magnetic field tensor are given by,
Ex
? = —81A4 + 84A1 = F41 = —F14 (468)
Ey
T = —82A4 + 84A2 = Fp = —Fyy (469)
E,
By = 02A3 —0d3A; = Fo3 = —F3 (4.71)
By = 03A1 — 0143 = F31 = —Fi3 4.72)

B, = 01Ay —02A1 = Fip = —Fy;

(4.73)
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Finally, the electromagnetic field tensor is given by,

0 B, -B, —&
E
_B B. _k
P — = 0 B < (4.74)
E, E,
< < 70

4.3 Exercises

Exercice 5 :
— — . )
The electric and magnetic fields E; and Bj, measured by an observer O linked to a Galilean
%
reference frame R, are given in terms of the scalar and vector potentials ¢, A1 by the equations

— — 9A, - —
El - —grad 471 - a—tl, B1 - I;iAl

— —
1. Give the expression for the components of the fields E; and B; in the reference frame R.
2. Find the components of the electromagnetic tensor.

—> —7 .
3. What are the new values of the fields E; and B; , measured by an observer O linked to a
Galilean reference frame R’ moving at a constant speed V relative to R?

Exercice 6 :

_>
— Find the probability current of the Schrodinger equation j which verifies the equation
dp —

We give : p = ¢p* (7, t)ip(7, 1)



Symmetry and invariance

5.1 Definition

A physical law is said to be invariant when it remains unchanged by a change of coordinates and
variables.

Example:

In classical mechanics:

— The coordinates are represented by: Tt

— The variables are represented by: 7(b), 7(1‘), e
In quantum mechanics:

— The coordinates are represented by: (7, t), .

— The variables are represented by: ¢ (7,t), ¢ (£), - - .

In analytical mechanics:

— The coordinates are represented by: q (¢), p (t) - - -

— The variables are represented by: § (t) = —%, p(t) = — 90

5.2 Types of transformations

There are two kinds of transformation:

5.2.1 Geometric transformations

The geometric transformations that exist are:

25
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— Moving in space.
- Moving in time.
— Rotation.

— Time reversal T.

- Inversion of the origin P.

5.2.2 Internal transformations

A particle can undergo the following internal transformations:

- Interchanging identical particles.

- Interchanging particles and anti-particles. This transformation is often called "charge conju-

gation", which is denoted C.

Remarque:

The three transformations C, P, T are discrete transformations.

5.2.3 Internal geometric transformations

For this type of transformation, we can cite the Galilean transformation, given by

T 7 =7+t
, (5.1)
R —

5.3 Symmetries and conservation laws

In this section, it will be assumed that the Lagrangian density does not depend explicitly on (x;).
It will also be assumed that the equations of motion (and hence the action) remain unchanged

during an infinitesimal (continuous) transformation defined by,

{ Xy —> X = Xy 4 (5xy (52)

P(xu) — ¢ (x,) = P(xu) + 5 (xy)
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with,
xy, — position spatio-temporelle (coordonnées)
dx;, — variation infinitisimale (deplacement l'espace et dans le temps)
¢(xu) — champ scalaire (variable)

d¢(x,) — variation de phase (dfie a une rotation)

5.3.1 Example of transformation
Space-time transformation

A space-time transformation is defined by

{ Xy — x; =xy+ay, (ay=0xy) (5.3)
¢(xp) — ¢ (x,) = ¢(xp) . (5¢(x) = 0)
Where a,, represents the quadri-vector displacement in space-time.
According to the infinitesimal transformation given in equation (5.3),
¢ (xy) = ¢ (xu+ay) = p(xp) (5.4)
therefore;
¢ (xu+ay) = ¢(xp) (5.5)
Global phase transformation (¢(x;,) # ¢*(x,))
This transformation is given by,
{ xy—>x;,:xy, (0x, = 0) | (5.6)
P(xn) — ¢ () = ¢(xp) + () = e P p(x,)
Where theta(x,) is a real scalar.
According to the infinitesimal transformation given in equation (5.6),
¢ () = ¢ () = P(xu) + 09 (xp) = e (x) (5.7)

therefor,

/

¢ (xy) = 10" (xy) (58)
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Local phase transformation (¢(x,) = ¢*(x,))

This transformation is given by,

{xy—mc;l:xy, (0x, =0) (5.9)
D) — ¢ () = px) + 0¢(x,) = 7PN (x) |
Where theta(x,) is a real scalar.
According to the infinitesimal transformation given in equation (5.9),
¢ (x,) = ¢ (x) = P(xp) + 5p(xy,) = e W p(xy) (5.10)
therefor,
¢ () = e g (x,) (5.11)

5.3.2 Noether’s theorem
Statement

For any continuous transformation of the action S, there is a current ], satisfying the equation
This implies that there is a self-preserving charge, defined by
Q= / 0dPx (5.13)

Demonstration
The equations of motion are said to be invariant if the action S is stationary.
6S=8 —-S~0 (5.14)

We have
5= / dx L(p,0u) = S = / a4y £(¢,9,9) (5.15)
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Given £ = L(¢,0,¢) (where the Lagrangian density does not have explicit dependence on x,,).

Let us consider infinitesimal transformations of the form,

{ Xy —> xly :/xy/+ dxy (5.16)
¢(xu) — ¢ (xy) = ¢(xu) + 5 (xp)
where

5p(x) = ¢ (x) — p(x) (5.17)

The symbol d¢(x,) represents the variation of the field due to both the transformation of the field
(variable) and the transformation of the coordinates (x,).

Thus, the change at a specific point in 4-dimensional space is determined by

!

Sop(x) = ¢ (x) — p(x) , pourx =x (5.18)
The relationship between the spacetime derivatives is expressed by
dx’ = [1+9,(dx,)]d*x (5.19)

Let’s now examine the relationship between the field variation at two different points d¢ and the
field variation at a fixed point Jy¢.
The variation of the field at two different points is given by

p(x) = ¢ (x) —p(x) = ¢ (x) — ¢ (x) + ¢ (x) — p(x) (5.20)
5p(x) = ¢ (x) + (3,9)3%, — @ (x) + Sop(x) (5.21)
with
P (x) = ¢ (xu+0x) = ¢ (x) + (9u)xy = ¢ (x) + (3u9)ox, (5.22)
Therefor,
Op(x) = Sop(x) + (dyp)dxy (5.23)
Let us calculate the term 8;4)’
We have 3

0 (¥) =3 (+6¢) = = (9 +¢) (5.24)
X
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0 Jx ax
= 7 (p+d¢) = <4> +09)5— (5.25)
oxy 8 y
We have also
x; =xy +dxy, = xy = x; — Xy (5.26)
Therefor ,
g’? = ng + aa, (6xy) (5.27)
Y Yo Oy
Finally, we get
ox
p

By substituting the equation (??) into equation (5.24), we obtain

3 (x) = (4>+ 4>)ax” (5.29)
P‘
0
_ (% \ %(54))) (G — 3u(0m)) (5.30)
= (9vg + 9v(69)) (6 — 9u(6xy)) (5.31)
::(aV¢)5yv“(av¢)ay(5xv)4‘av(5¢)5yv—‘av(5¢)ay(5xv) (5.32)
0,9 (x') = (3up) — (3u)du(6x,) + 3 (6) (5.33)

The term 9, (6¢)0,(dxy,) is neglected, as it is a higher-order term.
The Lagrangian density does not explicitly depend on x,, which implies that £ = L(¢,9,,¢).
Therefor,

L(¢,0,9) = L@+ 50, (9u9) — (3u4)y(0xy) +,(59)) (5.34)
oL oL
L(),0up) + %&P + a(a—m[a’*(&b) — (9v)9y(dxy)] (5.35)
we get
oL oL oL

L($,3,9) = L($,9up) + 5920 53,5 2 9) ~ 5.5y (Qe9)u(0x0) (5.36)

(9u¢)
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By substituting the equation (5.19) into the equation (5.14), one arrives at the following result

55_/d4x£<p8 /d4x£<Pay<P)NO

_/1+a (6x,0))d%x L(¢, 3, /d4x£ $,9,40) =0

65 = [1L(#,09) — £(9,2,9) + (6, Lld*x = 0

Let us calculate the following term: £ (¢, 8;,cp’) — L(¢,0,¢)

L(¢,0,9) — L(§,9u0) = L(¢,0u) + ag 4>+a(3—f¢)ay(5¢) (afq))(m L (8,) —
£, 3,0) — L($,3up) = ag 4>+a(§—f@ay<5¢> (af¢)< o$)P(6,)

According to the Euler-Lagrange equations,

then

We have also

o (57%0) = (5) %+ s

oL ( oL ) ( oL )
———0,4(0p) =0y | ==—=0¢p | =0y | === | ¢
3@ " =\ 3, O G )
By replacing equations (5.41) and (5.42) in equation (5.40), we obtain

Therefor

28,0~ £ =20 (5557 ) 0+ (55.910) ~2 (5537 )0~ 5597

) ) ()

/ / /

£0,38) = £L0.200) = 0 (557750 ) = 55,57 e2uln)

o)

(5.37)

(5.38)

(5.39)

L(p, o)

(5.40)

(5.41)

(5.42)

(0 1/47)8;4(5351/)

(5.43)
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We have
Op = Sop + (9up)oxy
Then
oL _ oL .
o (a3,7°0) =2 (a0, 0 + 00155 )
oL . oL oL i}
o (s) =2 (s,07%) +2 (56,7090 644
Let us calculate the term 9, (a(g;ip) (9yp) (59(1/)):
oL _a, (25 oL oL

Ay ( 30,) (av¢)(5xu)> =9, ( 30, 4,)) (3u) (0xy) + 5 o, (P)ay ((0v)) (20) + 52— 57 (3v)dy (5%,)

By neglecting higher order terms, one can find

9 (%(avqb)(ém) —3, (%) 0u) (%) + 555

v oxy 5.45
9(9u¢ 9(du¢ u‘P)( #)9 (03) 54)

Therefor

o (5™) = (377 2 () O 050+ 5, g5 0o i) 60

By inserting equation (5.46) into equation (5.43), we get

£0,38) = £L0.200) = 0 (555750 ) = 5557 e2ulm)

_ 9L oL oL o
% ( 3(9u9) " (P) (a(ayqy)) (0u9) (03) + 57555 )y (052) = 5755 (0up)y (630)

So,

£0.20) - L029) =00 (5557000 )+ (55197 ) @) (o)

Calculating the term 0, < ) (0vg) (Oxy):

oL o ac axy a9
on (5057) @0)(0%) = G ox) = 5= 5 S,
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oL Qv oL

axy 00Xy axy o, OXy = Ol 0xy

Finally, we get

! / ! aﬁ
L(¢,0,9) — L($p,dup) = ( o, (P)(Soqb> +3,L 6x, (5.47)

The variation of the action in the equation (5.39) becomes

05 = / {874 (a(i&o(p) +9,L 6xy +8y((5x,,)£} d*x ~ 0

)

We have

0L 6xy + 9, (0xy) L = 0, (L oxy)
Then,

oL
6S = / [ay (W50¢) +0,(L 5xy)] d*x ~0
4y ~
/a K V(P)(Sogl)) +£5x4 dbx ~ 0
oL

The final equation can be expressed in the following form
I Ju =0

with
oL

L TEN

So¢ + L 6x,, — Courant de Noether
Exercice 7 :

1. Demonstrate that the Lagrangian density of the free complex scalar field remains invariant

under the following global phase transformation

{() ¢ (x) = ep(x)
¢*(x) — ¢ (x) = e P¢* ()

0 is a real constant that does not depend on x,.

2. What are the currents and charges that are conserved?
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Exercice 8 :
The dynamics of a system consisting of a real scalar field ¢; and two complex scalar fields ¢, and

¢3 is described by the Lagrangian density.

1 * * . * . *
L= < pp1)? = Smipt — (0u3) (Oppa) — M3 — (O + i A) 3 (9 — iqAu) s — M35 ¢h3
In which my, my, and m3 represent constants.

1. Find the equations of motion?

2. It is known that the Lagrangian density remains invariant under the following two global

phase transformations.

{ ¢1(x) — fl)/l( ) = ef"“lfPl(x) { $2(x) — Pa(x) = 6“"?4?2(96)
¢1(x) — Py (x) =i (x) | p3(x) — Py (x) = e~ 2903 (x)

nq and ap are real constants with no dependence on x.

What are the currents and charges that are conserved in these transformations?

Solution 9:
1°/ The dynamics of a system are characterized by the Lagrangian density,

L= ( wr)” - 17”14’1 (Oudp2) (9ug3) — mapagps — (9 + iqAy) ¢3 (B — iqAy) ¢35 — P33
The Lagrangian density can be expressed in the following form:
L=L1+ L+ L3
a°/: The real scalar field is determined by the following Lagrangian density,

1
L1(p1,0u¢1,x) = ( ﬂ‘Pl) m% %

Equations of motion: Let us replace in the Euler-Lagrange equations, where ¢; = ¢1 = ¢

0Ly o (9L ) _
o <a<ay¢1>) 0
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The Klein-Gordon equation is obtained by replacing

<8V8y — m%) $1(xu) =0

b°/: The complex scalar field is defined by the following Lagrangian density:

L (2,052, 95,093, %) = — (9u2) (0uh3) — m3aep>

Equations of motion: Let’s substitute ¢; = ¢, ¢; in both Euler-Lagrange equations,

9L, ( oL, )_ oLy ( oLy )_
— 0, (=== ) =0, =—-0,(=Z~)=0
dpa " \9(9u¢2) ap; " \9(9,93)

9L, ) 9L, 9L, - 9L .
= —my¢o, ~ = =0y, —— = —msP,, = —0,¢,.
¢} 202 (0, 3) 12 5, 22 3(0u¢2) 2

with

By substituting into equation (5.3.2), we obtain the following two equations,

(00 — m3) ¢2(xu) = 0, (3,9 —m3) p3(x,) = 0

c°/: The Lagrangian density for the complex scalar field in the presence of an external electro-

magnetic field is given by the following expression,

L($3,0ut3, $3, 03, %) = — (9 +iqAy) @3 (0 — igAL) P35 — m° P33

Equations of motion for the field ¢3: Let’s substitute in the Euler-Lagrange equation for ¢; = ¢3,
0L3 ( 0L3 >
— |5~ =0
opy " \0(9up3)

L3 =—(0403) (9p — igA,) ¢3 — iqAud3 (0 — igAL) 3 — M P33

Ly | , 9Ls |
with = —iqA, (9, — igA —mip3, == = — (9, —igA :
a‘P; q " ( H q ﬂ) (P3 34)3 a(aﬂ¢3> ( M q V) (P?’

By substituting into equation (5.3.2), we obtain the following two equations,

we have

—iqAy (9, — iqAy) @3 — mi¢s + 0y (9, — igA,) 3 =0

[(au —iqAy) (9 —iqAu) — m%] ¢3(xy) =0



Equations of motion for the field ¢3: Let’s substitute in the Euler-Lagrange equation for ¢; =

0L3 0L3
JR———— a —_— =
ops " (5(3y4’3)) 0

L3 = — (04¢3) (0 +i9Au) @5 + iqAuds (39, + iqA,) ¢ — m* a3

oL _ , 0L3 .
with —= =igA, (9, + igA *mipt, —— = — (9, +igA x.
84> qAu (0 +iqAy) ¢3 — m3¢3 3(0p3) (9 +igAy) ¢3

By substituting into equation (5.3.2), we obtain the following two equations,
1Ay (9 +19Ay) ¢35 — m3g5 + 0y (0 + igAu) ¢35 =0

[(aﬂ +iqAu) (9 +iqAy) — m%} ¢3(xu) =0

2°/ Find the currents and charges associated with the two global phase transformations:

According th Noether’s Theorem

s= [a, K ¢>+E(5x4d4x20
(9ui)

a°/ Current and charge associated with the real scalar field in the transformation:

{ P1(x) — ¢ (x) = e 11 ()
97 (x) — ¢y (x) = eigf (x)

«1 is a real constant that does not depend on x.
Through the application of Noether’s theorem:

5= o (ot i) =1
1

with
0Ly 0L

9(0,p7)  (0ug1)

—Jun

504)1 = (Pll — (])1 = eiml(,‘bl — (])1 = (e*i"‘l — 1)4)1 = (1 — iDCl — 1)4)1 = —ioc14>1 pOllI' ] << 1

Therefor,
55 = /ay (=i(Bpu1)pn ) ard*x ~ 0

36
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01 << 1= 9y (—i(ug1)p1) = 0= 9], =0

Therefore, the current of the free real scalar field is given by,

Ji = =i@upr)gn = Giopr), avec pr =L = (—aig1)g)

The charge Q; related to this transformation is determined by,

Qi = [ @xp1 = [ @x(-0ig1)g
b°/ Current and charge associated with the complex scalar field in the transformation:
{ $2(x) — §(x) =" 290 ()
5 (x) — ¢y (x) = e7"2¢5(x)

The real number «; is independent of x.

By applying Noether’s theorem:

5= [on| (o) + (amats) | =0

ALy . AL

3(3u2) = —0u¢2, 30,93) = —0uf2

Sop2 = — 2 = €2y — py = (€™ — 1)y = (1 + iz — 1)y = imypy pour a << 1
So3 = @3 — @3 = ey — @5 = (e — )¢5 = (1—ing — 1)} = —ir pour ap << 1
Therefor,

With

S = /a HCPZ P2 + Z( ﬂ¢2)¢2> 0(2d4x ~0

ty << 1= 0y (—i(3,u¢3) P2 +i(up2)p3) = 0= 9,J7 =0

The current of the real free scalar field is therefore given by,

Ji = —i(0u3)d2 +i(@up2) 3 = (ji,p2), avec pp = ]f = —(9142) P2 + (9r¢2) P2



The charge Qg linked to this transformation is expressed as:

Q= [ dxpr = [ @x ()5 — (2143)¢2)

5.4 Energy-Momentum Tensor of the scalar field

38

Since the Lagrangian density £ does not explicitly depend on the four-position vector x,, its

derivative with respect to x; is as follows

. d
H
Therefor ar
0, L =—
# dxy,
We have,

AL 0L Op | L 3(0v9)
ox,  9¢dx, 9(dvp) Oxu

According to the Euler-Lagrange equation, we have

%_a (L)ZO j%:a ( oL ) our =v
99 \9,9) a9~ " \a@g) PF

Therefor,

0L L L
5=y = (a) 2 a9

By setting,

we found that,

oL oL oL
Ik =0 <a<avq>>> WP+ 3,9y () = (a<av4>> a”"’)

The expression 9, L can also be represented in the following way:

AL AL I,

Ol = ox,  0xy 0xy

= (9vL) Sy = 3y (L)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)



Comparing equations (5.54) and (5.55), we can see that

oL
8}4/3 = ay (a(a—may(]b) == av (Léyl/)

Therefor,

oL

Now, if we replace v by u
oL

The letter can be rewritten in the following form,

oL
I

The tensor T;, denotes the energy-momentum tensor of the scalar field.

5.5 Exercises

Exercice 9 :

In the position space {|7)}, the geometric transformation origin inversion is defined as:

n|7)=|-7),

IT represents the parity operator.

1. Calculate IT| )
2. Calculate IT|y(t))

39

(5.56)

(5.57)

(5.58)

(5.59)

- — - —
3. The transformed A of an operator A is defined by A" = IT A I1~!. Calculate the transforms

of the position, momentum, and angular momentum operators given respectively by

7 - -
R=TIRII-LP =PI 'and L' =TI L II-!



Klein-Gordon equation

6.1 Introduction

The construction of quantum mechanics, which considers time as decoupled from space variables,
is not compatible with the principles of special relativity. Additionally, experimental observations
show that quantum mechanics is only accurate when the observed phenomena involve particles
at low speeds. For example, it is not a suitable model for describing experiments involving
interaction between light and matter.

In this chapter, we introduce the initial efforts to modify quantum mechanics to incorporate
relativistic principles. Our first objective will be to derive a relativistic equation. In other words,
we will begin our exploration with a particle that possesses zero spin. Within this context, it is
logical to operate within the framework of Minkowski space, which is fundamental to special
relativity, in order to develop a relativistic theory.

In order to describe quantum particles with zero spin and relativistic speeds, the Klein-Gordon

equation is introduced. This equation is the relativistic equivalent of the Schrodinger equation

given by,
Hyp = Ey (6.1)
By applying the principle of equivalence, we can write
—
L0 P2 n_, N .
o= p=—V, P = _inV 6.2)

It is known that in the case of plane waves, the functions 1,0(7, t) which are solutions of the
Schrodinger equation are given by.

7—>
. E
4 )

P(7,t) =€ 6.3)

Let’s attempt to find the general form of the Klein-Gordon equation, which allows us to describe

the motion of free particles with zero spin and relativistic velocities, starting from the Schrodinger

40
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equation.

6.2 Quadri-vectors in field theory.

It is important to remember that the relativistic energy of a free particle is determined by

E=,/ 7202 + m2c* (6.4)

- 7 : impulsion
- ¢ : velocity of light

— m : mass of the particle

The energy-momentum quadri-vector P is defined by.
P - (7, %) (65)

—
In field theory, the Einstein convention is used. If A is a quadri-vector, it is denoted as A, with
u =1,2,3,4. The quadri-vector A, has the following components:

aj
a

Ay = (6.6)
as

iﬂ4

When calculating the dot product of two quadri-vectors A, and B, the result is obtained

a1 bl
ar bz
AyBV = = +a1by + axby + azbs — agby (6.7)
as b3
i6l4 Zb4

The scalar product satisfies the metric of Minkowski space (+, +, +, —).

In the field theory, the energy-momentum quadri-vector is written as:

P, = (7,1'%) (6.8)
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It should be emphasized that in quantum mechanics, E and 7 are defined as:

E— ih% T —inY 6.9)

By substituting (6.9) into (6.8), we obtain

P, = (-ih?, i a) — _in (V,—éi) (6.10)

Z__
c ot
If we set,

9, = (?,—13) 6.11)

c ot

The quadri-vector spatio-temporal derivative is represented by d,,, where we find

6.3 Free Klein-Gordon equation

Let’s now find the equation of the free Klein-Gordon describing the motion (displacement) of a
quantum particle, with zero spin and relativistic speed

In quantum mechanics, a free particle is described by the Schrodinger’s evolution equation.
d 1
iho ¢(7,t) =E¢p(7,t) o E=H=E +V=E+0= Emvz avec v<<c  (6.13)

For a free relativistic particle

Eg = 1/ 2% + m2ct (6.14)

The dynamics of these relativistic particles will be described by the following equation

ih% o(7,t) =Eg ¢(7,t) =/ P22 +m2* ¢(7,1) (6.15)
) 2 2
(ihﬁ) (7 ,1) = ( 722 +m2c4> (7,1 (6.16)
B 2£ = N (22 2 4 —
haztgl)(r,t)—(p c+mc> p(1,1) (6.17)
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_hzaa_;t (7, t) = <(—ih€>202 +m2c4> $(7,1) (6.18)
20° VA NI -
—h @4)(r,t):<<—zh ) c +mc> p(1, 1) (6.19)
L2 32 B2 202 2 4
%%4)(7),15) 4 hz—c; (7, 1) — ;}:252 (7 ,t) =0 (6.20)

By setting ?2 = A, we obtain the following equation

192  m?c2
<A—§@—7> o(7,1) =0 (6.21)

The final equation represents the free Klein-Gordon equation written in real space. Let us now

seek the form of this equation in Minkowski space.

We have 5 5 3
_ _to 2 5 .5 _ _ro), _te

1 0 1 0
2 _ A R S
0y = (A, 2 azt) A 257 (6.23)
By replacing (6.23) in (6.21), we get
2.2
<a§, - mhzc ) $(7,t) =0 (6.24)

By setting # = ¢ = 1 and defining (7,1) = x,, where x,, denotes a point in Minkowski space and
u=1,2,3,4, the equation (6.24) is transformed

(af, . mz) ¢(x,) =0 (6.25)

This equation represents the free Klein-Gordon equation expressed in Minkowski space.
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6.4 Invariance of the free Klein-Gordon equation under gauge

transformation

Exercice 10 :

The motion of a particle with mass m, zero spin, and relativistic speed c is governed by the

following free Klein-Gordon equation

2 2
- Demonstrate the invariance of this equation under the following gauge transformation

P(xy) — cp/(xy) = e*iq“(xﬂ)(p(xy) , ¢(xy),a(x,) sont deux réels arbitraires.

6.5 Solutions to the free Klein-Gordon equation

The free for Klein-Gordon equation is given by

2 2 , . 10> m?c s
(ay —m ) ¢(xy) =0 qu'on peut écrire | A — 29 p(7r,t)=0 (6.26)

This equation has a solution in steady states. Its general form is given by,

o(7, 1) = f(t) - p(7) (6.27)

It is said that a steady-state solution is a solution with separable variables. Substituting (6.27) into

(6.26), we find , )
19
(8- 232 ) F0-9(?)=0 (6:28)

1 92 m?2c?

FOMY(T) = () o (1) —

FOW(T)=0 (6.29)



Dividing the entire equation by f(#)y(7") yields

FB)bp(7) _ 1 > 1% 1 22 S
Fow()  rep) ! ee O gy e N =0
Ap(7) 11 m2c?

o7 foea’ W =0

This equation represents a second-order equation with two independent variables.

— 2.2 i " 82
Alplp((?:)) _ mhzc — Cl_zj; ((tt)) = constante, avec [ = @f (t)

2

If we define constant = w*, we can deduce

AYp(7) _mP 1,

=w
p(7) )
From this equation, we derive the two following equations:
Ap(F)  mP? Ap(7) o, mA = < 2 m2c2> .
— " 20 = w” + = AYP( 1) — r) =

1F'() _ £ : : _
2l =@ = g = A= () = () = () - P ) =

Equation (6.35) can be expressed in the following general form

1

£ () £ (cw)2f(t) = 0
Equation (6.35) then has solutions of the form
f(t) — Aecwt + Befcwt

In order to have continuous solutions everywhere, we set

iE .
cw = —, E estun réel.

h
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(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)



By substituting (6.37) into (6.38), we obtain

We have
_ 1E 2.2 2 2 _ 2
Let us now substitute into equation (6.34)
2 2.2
— E mec —
Al/J(T)— <—W+7)l/)(1’):0:>

By finding a common denominator, one can determine
E2  m?ct —E? 4+ m?ct
P~ (B2 () 0 ) - (ELE) i) o

Or,
B2 — 72c2+mzc4 — —?%2 N "

By substituting into the previous equation, we find

_ 722 =
AlP(?)— ( thz )z,b(?) :0:>A1,b(7>)— ( g )4;(?) -0 —

—

Ap(7) - (%)24)(?) ~0

This equation has solutions of the following form

170(7) :CeﬁTrﬁ—De_ f
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(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

6.6 Physical interpretation of solutions to the free Klein-Gordon

equation

In order to give a physical meaning to the solutions, we assume

iE

- ¢~ 1! Represents a particle that was created in the past (—c0) and is traveling towards the

future (+c0).
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iE
— ¢! Represents a particle created in the future (+o0) and travels towards the past (—oo).

— A Represents the probability that the particle being created in the future (+o0) and traveling
towards the past (—o0).

— B Represents the probability that the particle was created in the past, extending from nega-
tive infinity (—o0), and is now moving towards the future, represented by positive infinity
(+00).

Therefor, the physical solution is given by
flt)=eu! (6.47)

It signifies the probability that the particle was created in the past, extending from negative

infinity, and is now moving towards the future, represented by positive infinity

z?? i

$(7,8) = f(t)-p(7) = e ! (C e+ De_?) (6.48)
Exercice 11 :
The particles with spin 0, charge g, and mass m are approaching from (4o0) to (—o0) on a

potential barrier of height V and width a. Given that the energy of these particles is given by
E =gV /2, where gV > 2mc?,

1. Calculate the transmission coefficients T and reflection coefficients R.

2. Calculate the current density J, in each region.

Indication: Working on one dimension.
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6.7 Klein-Gordon equation in the presence of an external elec-

tromagnetic field

This equation describes the interaction between a particle with charge g and the external electro-
- .

magnetic field, which is represented by the four-vector potential A, = (A , 1%)

To obtain the Klein-Gordon equation in the presence of an external electromagnetic field, the

minimal coupling method is employed, which involves substituting the momentum and energy

(7, E) with.
E—E—q¢ 7T —gA (6.49)

In the free Klein-Gordon equation, the transformation presented in equation (6.49) can be refor-

mulated using four-vectors. Its expression is provided by:

Exercice 12 :

— Demonstrate the equivalence of the two transformations provided in equations (6.49) and
(6.50).

We have
Py = —ihd, = P, = —id, pourh =1 (6.51)

The transformation (6.50) becomes,
—idy — —i0y —qA, = 9y — 0y — iqA, = 0y - 0y — (0 — iqA,) (94 — iqAy) (6.52)
If we replace in the free Klein-Gordon equation, we get
[(ay —iqgAy) (0y —iqAy) — mz} P(xy) =0 (6.53)

This equation is known as the Klein-Gordon equation in the presence of an external electromag-

netic field A,. Introducing D;, = (9, —igA,), equation (6.53) can be expressed as

| DuDy = 2| ¢(x) = 0 (6.54)
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The conjugate of the latter equation is provided by

DDy = 12| ¢ () = 0= [ (3 +iqAy) (3 +iqAy) —m?| ¢*(x,) =0 (6.55)

6.8 invariance of the Klein-Gordon equation under the presence
of an external electromagnetic field through gauge transfor-

mation

Exercice 13 :

In the presence of an external electromagnetic field Ay( A ,iV), the motion of a particle with mass

m, zero spin, and relativistic speed c is characterized by the following Klein-Gordon equation

- Demonstrate the invariance of this equation under the following gauge transformation

Ay — A'H = Ay —ua(xy)
P(xy) — 4)/(x;,) = e’iq“(xﬂ)qb(xy) , ¢(xy), a(x,)sont deux réels arbitraires.

6.9 Klein-Gordon equation current in the presence of an external

electromagnetic field

Exercice 14 :
The Klein-Gordon equation, which governs the dynamics of a relativistic particle with mass m,

— . .
charge g, and subject to an external electromagnetic-magnetic field A, ( A,i¢), is presented

(9 — g A) (3 — igAy) — m?] p(x) = 0
Determine the quadri-vector current expression of Klein-Gordon |, that solves the equation

ay]y =0
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We give : (9;, —igAy;)(9y, —iqA}) = (9 +iqAu) (o +iqAy)

6.10 Exercises

Exercice 15 :

Particles with spin 0, charge g, and mass m are approaching from (—oo) towards (+o0) a potential
barrier of height V' and width a.
Given that the energy of these particles is determined by E = gV /2, where gV > 2mc?,

1. Recover the general form of the wave function outside the potential barrier.

2. Calculate the current density |, outside the potential barrier when the wave function is
provided

P(x) = et
3. Demonstrate the expression for the transmission coefficient T

!

- 4pp
(p+7) elalp—p’) _ (r—7p) eia(p+p')

when the momentum p of particles outside the potential barrier is different from the mo-
mentum p’ of particles inside the potential barrier.

We give: p = VEZ —m2et p = \/(E —gV)* —m? avec ¢ = h = 1. Indication: Work in one
dimension

Exercice 16 :

1. Reconstruct the general form of the free Klein-Gordon equation from the Schrodinger equa-
tion.

2. Derive the general form of the Klein-Gordon equation in the presence of an external electro-
magnetic field by employing the method of minimal coupling.

3. Find the solutions of the free Klein-Gordon equation.

Exercice 17 :
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The Klein-Gordon equation (Adjoint), in the presence of an external electromagnetic-magnetic
field AH(X, %), is provided by

1. Demonstrate the invariance of this equation under the following gauge transformation:

¢*(x) — ¢*(x) = e 1*Wg*(x) , a(x;) est un réel arbitraire

Exercice 18 :

1. Obtain the quadri-current density vector expression from the continuity equation.

2. Derive the expression for the quadri-current potential from the Lorentz gauge equation.



Dirac equation

7.1 Introduction

We will now attempt to develop a relativistic theory for particles with non-zero spin. Initially, we
will consider a scenario in which the electromagnetic field is not taken into account.

To achieve a satisfactory model, it is necessary for the state vector i to be governed by an equation
that generalizes both the Schrodinger equation (which does not account for relativistic phenom-
ena) and the Klein-Gordon equation (which does not consider spin). This equation must possess

two primary properties.

1. It must remain invariant under the action of the Lorentz group.

2. It must be of the first order in t and, more specifically, take the following form.
ihdyp = Hpy (7.1)

where Hp represents an operator. The proof follows the same methodology as that em-

ployed to derive the Klein-Gordon equation.

7.2 The shortcomings of the Klein-Gordon equation

The Klein-Gordon equation is deemed unsatisfactory due to the presence of solutions with nega-
tive energy. This issue ultimately led Dirac to propose the existence of the "positron," a particle
analogous to the electron but possessing a positive charge.

Before examining the physical consequences of negative energies, it is essential to first establish
the underlying theory. Let us proceed with the standard approach when analyzing a second-

order ordinary differential equation that we wish to reduce to first order (in terms of ¢ only).

(P:<azbw>'

52

Let us define the following vector
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We are led to the following first-order equation:

. 0 Id
9= A+’;_j—§ 0o |

In fact, it will be more convenient to place.

ih il
471 - lIJ + %atlp et 4)2 = l[J - Eatgb (72)
It is important to note that the wave function defined by ® = (¢1,¢,) satisfies the following
equation
1 ifi A Ay 2im
9P = 5 ( O j}; f P. (7.3)
WA= F b

If the velocity of the particle is small compared to the speed of light, we can disregard its ki-
netic energy in relation to its internal energy, leading to the conclusion that the total energy is

2

approximately equal to E ~ mc?* = m?. This relationship is expressed in terms of observables

as ihdip = mip, which implies that in non-relativistic scenarios, ¢, ~ 0. By setting ¢» = 0 and

examining the first coordinate in (7.3), we derive the equation

ih
ot = %Aébl

. In other words, we arrive at the non-relativistic Schrodinger equation.

7.3 Dirac’s Hamiltonian

To prevent the use of particles with negative energies, as was the case with the Hamiltonian (the
total energy) from which the Klein-Gordon equation for a free particle was derived, Paul Dirac
suggested in 1928 that the general form of the Hamiltonian be expressed as follows:

3
Hpirae = 7.?0 + ,Bmcz = Z aj.pic + ,Bmcz = a;.pic+ B mc? (7.4)
i=1

where the coefficients f and a; are constants that do not commute.
- We are seeking the values of these two constants.



By calculating the square of the Dirac Hamiltonian H2,

H? = ((x,-.p,-c +B mcz) <ocj.p]-c + B mc2> = ?262 + m2c*

H? = pipjiaic? + Brmc*ct + mp; (Ba; + a;p) = P 2c* + mct

- It is observed through comparison that

FP=1=pp =1=p=p"

‘BDC]' —I—IJC]"B =0

pipjuin; = p*

fori =j=1,2,3 we can get:

pipjin; = piat + psas + p1p2 (w102 + aoq) + p1ps (a1as + azar) + pops (aoas + azas)

pipjit; = pi+ p3 + p3
For (7.10) to be equal to (7.11), it is necessary that

W = as=ai=1
wqop + oy = a3 + a3y = apas + azny =0

Therefor, if we suppose that zx? =1loui=1,2,3then

{061',06]'} = 251
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one arrives at the following expression

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)
(7.13)

(7.14)
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In this context, {A, B} = AB + BA represents the anti-commutator of the two quantities A and B.

Finally, the dimensionless constants a; and f satisfy the following anti-commutation relations

ﬁz -1 (7.15)
{B,ai} = 0 (7.16)
{061', Oé]} = 251] (717)
a2 =1 (7.18)
(7.19)
Therefor,
0 =a3=a}=p*=1, (7.20)
{ar, 00} = {a1, a5} = {ag, a3} = {B, a1} = {B, a2} = {B, a3} =0, (7.21)

7.4 The characteristics of Dirac matrices

Prior to formulating the Dirac equation that describes particles with non-zero spin, it is essential
to ascertain the order of the matrices present in the expression of the Dirac Hamiltonian. Es-
tablishing the order of the matrices B and «; will facilitate the determination of the number of
components in the spinor that characterizes the state of such a particle in the relativistic context.
To achieve this:

1. The eigenvalues of matrices are determined. g, a; :1 =1,2,3.

The eigenvalue equation, pertaining to  (and similarly to the «;), is expressed in the follow-

BX =1 X.

A second application of B (or the «;) yields, taking into account (??):

BX =ApX = 1.X =A2X

A2 =1 = A ==£1.

ing form.

Therefore, the eigenvalues of the matrices  and «; are either +1 or —1.

2. It is subsequently demonstrated that the traces Tr(B) = Tr(a;) = 0. To achieve this, we will
utilize, on one hand, the anti-commutation of the matrices in question, and on the other



hand, the well-known properties.

Tr(AB) =Tr(BA),
Tr(A A) = A Tr(A).

Indeed,
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(7.22)

Tr(a;) = Tr(la;) = Tr(B*a;) = Tr[B(Ba;)] = Tr[B(—a; B)]

= —Tr[B(a; B)] = —Tr|(a;i B)B]

= —Tr(a)

= Tr(a;) = 0.

Tr [(Xl' ,32]

(7.23)

A similar demonstration can be conducted to illustrate that Tr(p) = 0.

. We will utilize the property that Hermitian matrices M are diagonalizable, meaning there

exists an invertible matrix S such that.

SMS™t=Mp

) (7.24)

where the A; represent the eigenvalues of M. Additionally, the equality of the traces of the

two matrices M and Mp is also utilized. Indeed,

Tr(M) = Tr[S~Y(MpS)] = Tr[(MpS)S~'] = Tr(Mp) (7.25)

Since the matrices B and «; are Hermitian, it is possible to apply the aforementioned prop-

erties, which can be expressed in the context of f and «; as follows

Tr(B) = Tr(a;) =0

Tr(pp) = Tr[(a)p] =0

~/

+1-1+.—-1+1)=0.
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In order to achieve a sum of zero, it is necessary for the +1 and -1 values to completely offset
each other. This condition is met only when the dimensions of the matrices Bp, («;)p, or
alternatively, B and «;, are even, specifically when n = 2p.

For n = 2, A basis for the complex matrices My, consists of the set of Pauli matrices, along
with the identity matrix {o7,02,03,1}. In this scenario, there is no solution, as equating the
«; with the o; necessitates that p = 1. However, B has a trace that differs from 1 (Tr(1) = 2),
which is contradictory.

for n = 4, Solutions do exist. They can be expressed in standard representation in the

S(3D) () e
=&

1 0'1+€—2>0'2+€—3>0'3. The

following form.

where 1 represents the identity matrix of size (2 x 2) and @

three Pauli matrices are defined as follows

a=(Va) - (00) e (5 ) om

In conclusion, it can be stated that the matrices p and «; present in the Dirac Hamiltonian
are of order 4 x 4. Consequently, the wave function that characterizes the state of a particle
with non-zero spin is a four-component spinor. This spinor is capable of describing both
the particle and its non-zero spin antiparticle. In standard representation, it is customary to

employ the following condensed notation.

1/):(“"), (7.28)
X

In this context, ¢ and x represent two-component spinors, which correspond to the particle
and its antiparticle, respectively.



7.5 Standard representation

The representation of Dirac matrices in the standard form is provided by

T =1.
10 @)
I O
4 _

where o}, represents the Pauli matrices (which are 2 x 2 matrices), defined as follows.

o 01 S 0 —i on— 1 O
o) P o) TP lo 4
10 ) . 00

= — matrice unitaire, O =
01 00

1. Provide the explicit forms of the following Dirac matrices: 7!, 92, 4, and 7*.

and

Exercice 19 :

2. Demonstrate that

1000
0100
T = ol N =1= oyt =26
(r)/ ) r)/ 4 (r)/ ) O 0 1 O 7 {,)/ /r)/ } nv
0001
Solution 20:
1°/ The four Dirac matrices are provided by,
00 0 —i
1. (O —icy) |0 0 —i
icp O 07 O

(e}
(e}
(e}
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(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)
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(7.35)
(7.36)
(7.37)
(7.38)
(7.39)

alors AT =gt

111']'

(7.40)

_OOO

S — O O

o O - O

si A

N

(YT =", on

2°/a/ Demonstrate that:

-Foru=1
-Foryu=2

(7.41)

-Foru=3
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-Foru=4

(7.42)

-1

Therefor, (y*)" = .

2°/b/ Demonstrate that:

(7.43)

-Foru=1

(7.44)

-Foryu =2

-Foruy =3



-Foru =4
10 0 O 10 0 O 1 000
( 4>2 101 0 1 01 0 1| [01TO0O0| 1
7 00 -1 0 00 -1 0 0010
00 0 -1 00 0 -1 0001
Therefor (y")? = 1.
2°/c/ Demonstrate that:
{’YH/’YV} = 25;41/
-Poury=v=1
1 .1 1.1 1.1 1\2
[t =2+t =2 (o) = 20n =2
-Pouruy=1,v=2
(Y'Y =7+ =26 =0
Verification:
00 0 —i 0 0 0 —1 i 0 0 O
19 00 — O 0O 01 O 0 —i 0 O
Y= . = .
07 0 O 0O 10 O 0O 0 ¢ O
i 0 0 O -1 0 0 O 0O 0 0 —i
0O 00 -1 00 0 —i —i 0 0 0
’ 1 0O 01 O 00 —i O 0O ¢+ 0 O
Y = . = .
0 10 O 07 0 O 0O 0 —1 0
-1 0 0 O i 0 0 O 0 0 0 i
Therefor,
i 0 0 O —i 0 0 0 0 0O
0O —1 0 O 0O «+ 0 O 000
1.2 1,2 2.1
, = + = -|— =
b =rr+aty 0O 0 7 O 0 0 —i O 000
0O 0 0 —i 0O 0 0 1 000

Therefor,
{v",7'} =2 lorsque u=v, {9¥,7"} =0 lorsque u #v

o O O O
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(7.47)

(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)



7.6 Free Dirac equation

62

In the following discussion, we will attempt to derive the Dirac equation from the Schrodinger

evolution equation,

e h2
lha_lil_} = HShrdinger¢r avec HShrodinger = _%62

The Dirac’s Hamiltonian is given by,
Hpirae = Xj.piC + ﬁ mCZ

and .
P =—itV = —ihd = —ihd,

We have also,
_ i :ia = —cd
YT o ot ¢

By substituting into (7.55), one obtains.

ih%—lf = (zxi.pic + ﬁmcz> Y= —chosp = (—ihtxi dic+ ,Bmcz) P

If we divide both sides of the equation (7.59) by ¢, we obtain
—h84¢ = (—ihﬂciai —|—,Bmc) P

At this point, if we divide both sides of the equation (7.60) by 8, we obtain

—Bhogp = (—iBhwa;d; +mc)pavec B =p !

mc

(345+3i(—iﬁ06i)+ 7 >1P:0

<a474+ai7i+%>¢’:0

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)

(7.63)



with
7= B
Y = —iBa

Finally, we found,
(8474+8i7i+m> p=0 avec h=c=1

By employing the representation of the two quadri-vectors.

ay - (aiza4)
" o= (%"r‘*)

where,
(9;,04) - (71,74> =047 +0i7'
This equation can be rewritten as follow,

(O +m)yp=0

The last equation represents the Dirac equation for a free particle.

If we make the following assumption,

a = a,u ryV
We get,
1 (x)
(d+m)p(x) =0 avec P(x)= ¥2(x)
$3(x)
Pa(x)
Therefore, the Dirac matrices exhibit the following properties for subscripts p,v =1,2,3,4
(") = "
(") =1

'y = 264y

— spineur de dirac
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(7.64)
(7.65)

(7.66)

(7.67)
(7.68)

(7.69)

(7.70)

(7.71)

(7.72)

(7.73)
(7.74)
(7.75)
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7.7 Physical interpretation of the negatives energies

The advantage of utilizing component vectors (spinors) lies in their ability to represent fermions
(such as electrons). Specifically, two components of the Dirac spinor are employed to character-
ize the two spin states (+1) of the particle, which possesses an energy of (y/p2c2 + m2c%). The
remaining two components of the spinor are used to describe the spin state of the antiparticle,
which has an energy of (—+/p2c2 + m2c%).

The antiparticle simply represents the absence of matter (a void).

For instance, when a particle transitions from a lower energy level to a higher energy level,
the vacancy created by the particle, known as a hole, is regarded as the antiparticle of energy
(E = — /P22 + m2c%), commonly referred to as a positron. A positron has the same mass as an
electron but carries a positive charge (-+¢).

S Electron © Electron
= fone interdte i . Tone interdite
i"*ll-""ﬂl"'l'lf'l L [ =T L .
Mer de Dirac Mer de Dirac
(Blectrons [ Efflgdrnns
t'Energie Energie
négative) negative)

Figure 7.1: Diagram of the Dirac Sea.

When an electron returns to its initial state, it emits a photon of energy (hv)
e~ +et — v (7.76)

This process is referred to as the annihilation phenomenon. It can be observed in particle accel-
erators, where electrons and positrons are accelerated to speeds approaching that of light, subse-
quently colliding to produce new particles (such as pions, mesons, etc.) that possess extremely
short lifetimes.



7.8 Current of free Dirac equation
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We seek the expression of the current associated with the Dirac equation, which satisfies the given

continuity equation.

%Jr?'?:():aﬂuzo avec n=1,2,3,4

The free Dirac equation is given by,
(9 +m)p(x) = 0= (duy" +m) p(x) =0

- By calculating the conjugate of the Dirac equation, we arrive at the following result

(@ +m) ()] =0 = p*(x) (3 (1) +m) =0

We have
Iy = (9i,94) == 9, = (97, 93)
with
0 =0;, 0;=—0y4
Therefor,
d, = (9i, —04)
and
7= (V) = (") =" = (V)

Therefor,

Substituting (7.84) in (7.79) we get,

ANEY) (817i—84”r4+m) =0

By multiplying both sides of the equation (7.85) by (7*), one arrives at the following result.

v () (0 ()" +m) =0] x4t

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

(7.82)

(7.83)

(7.84)

(7.85)

(7.86)



gr() (377"~ dar*rt +mat) =0
{2} =280 = {77} =+t =0 =1l = oty
Therefor,
g7 (10 =1t +rtm) = 0=
Pyt (—a,-fyi—84’y4+m) =0= ¢ 9" (—9u9" +m) =0
If we define ¥ = ¢ 7*, the adjoint equation of the free Dirac equation is transformed
P (—0uy! +m) =0= ¢ (0u7" —m) =0

It can be expressed in the following final form,

g (7 -m)=0
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(7.87)

(7.88)

(7.89)

(7.90)

(7.91)

(7.92)

By multiplying equation (7.78) by ¢ and equation (7.92) by ¢, we obtain the following results

POy +m)yp=0

@(ay')’y_m)’#:o

By calculating the sum of the two equations (7.93) and (7.94), one finds that
P@ur +m)p+¢(Qur —m)p=0=
_ _ = —
POu Y+ PP+ P oY — mp =0 =
o0 (P ) =0= ay];ffmc —0

with
]Dirac _ k@,),}lw — Z’@:ﬂ‘w avec k=1

(7.93)

(7.94)

(7.95)

(7.96)

(7.97)

(7.98)
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7.8.1 vector current and total charge

Let us compute the expressions for the components of the momentum vector of j; and j;

Lh=ipy'yp=ipty*y y=ipTy=p (7.99)
Ji=igy p=ipty*ay'y (7.100)
Or

v=—iBa, B=9"= 9 =—irte; = (7.101)
r)/4 f)/i = —{ ,),4 ,),4 N, = n; = i’)/4 ’yi (7.102)

Therefor,

_)

=y o= | =9pT Wy (7.103)

Finally, the total charge is given by,
= / Pxo =i / Pxypt g (7.104)
7.9 Dirac equation in the presence of an external electromagnetic
field

To recover the Dirac equation in the presence of an external electromagnetic field A;, the method

of minimal coupling is employed

dyu — 0y — iq A, (7.105)
(F+m)p(x) =0= (¥ +m)p(x) =0 (7.106)

Substituting (7.105) in (7.106) we get,
((0p —igAy) Y +m) p(x) =0 = (" —igAu " +m)p(x) =0 (7.107)

(§—ig A+m)p(x) =0 (7.108)
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This is the Dirac equation in the presence of an external electromagnetic field A,.

710 Lagrangian of the complex spinor field

It is possible to derive the Dirac equation and the adjoint Dirac equation by employing the La-

grangian formulation. Our selection of the Lagrangian is as follows

L, 0p, P, 05, xp) = =P (F+m) ¢ (7.109)

Verification: Let us verify that this Lagrangian density enables us to obtain the equations of
motion for the free complex spinor field (¢, ¢). To conduct this verification, it is necessary to
substitute the expression of the Lagrangian density into the Euler-Lagrange equations for a field,
oL oL —
o= ) =0 = = 7.110
o p (a(aycp)) avec ¢ =9 =19 ( )
Therefore, each value of ¢; corresponds to a motion equation
oL oL : . I . . .
= — 0y | 57— | = 0 — This equation allows for the derivation of the adjoint Dirac equation.
I ()

(7.111)

oL oL
= — 0y (—) = 0 — This equation allows for the derivation of the Dirac equation,

9P ()
(7.112)
1- Let us revisit the Dirac adjoint equation
oL oL
— =0y —my, — =0 7.113
oY Ko my () 711
So,
oL oL
— =y | = | =0= —(uY'+m)p=0= (d+m)yp=0 (7.114)
TR
2- Let us revisit the Dirac equation
oL — oL _
= - = —~yH
39 mi, 300,9) Py (7.115)
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Therefor
oL oL - — =
5 (5 ) =0 = ¥ B = F (e —m) =0 =5 (¥ +m) =0 119

Therefore, the Lagrangian density of the free complex spinor field is expressed as

L= —F(@+m)y=— @7 +m)p = —Fou 1"y - g (7.117)

711 Lagrangian of the complex spinor field in the presence of

an external electromagnetic field.

To derive the two equations of motion for the spinor fields ¢ and ¢ in the presence of an external
electromagnetic field A;, the following Lagrangian density is employed

L=-9(@—ig A+m)p=—p Q" —igAyy' +m) ¢ (7.118)

That we can write in the following form,

L= o, 1" — ig Ay V" 9 + mgy (7.119)

It is important to recall that the Dirac equations and the adjoint Dirac equation in the presence of
an external electromagnetic field are expressed as follows,

(§—iqg A+m)p(x) =0 (7.120)

[ (3 +ig Adm) p(x) =0 (7.121)

Verification: Let us verify that this Lagrangian density enables us to derive the equations of
motion for the complex spinor field in the presence of an electromagnetic field. To conduct this
verification, it is necessary to substitute the expression of the Lagrangian density into the Euler-
Lagrange equations for a field,

%_ay( oL ):0 avec ¢i=p=7 (7.122)
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Therefore, each value of ¢; corresponds to a motion equation

oL oL
= _9,([———)=0 7.123
v~ (36) —
oL oL
ap " (a@w)) .
1- Let us revisit the adjoint equation
oL . oL
G =i Armp g o (7.125)

So

oL oL . .
ﬁ—ay (a(a—,@)> =0=—(d—-igA+m)p=0= (d—ig A+m)yp =0 (7.126)

2- Let us revisit the Dirac equation

oL . — — 0L _

w:lqu’)’yl/J—mlp, a(aylp) :_l/],)/y (7127)
alors
oL oL ) — — =
5y o <W> :0:>ZqAﬂ’yyl[J—m1[J+l[J’}’H:0:>l[J<a +qu,47"—m) =0 (7.128)

7.12 Exercises

Exercice 20 :

1°/ In the presence of an external electromagnetic field Ay, the dynamics of a relativistic particle
with charge g, mass m, and non-zero spin can be described by the following Lagrangian density

of the spinor field.

Lr=—(g—ig A+m)p = ¢y (99" —igAuy" +m)y

1. Derive the equations of motion by utilizing the Euler-Lagrange equations.
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2°/ In the absence of the electromagnetic field, the dynamics of a free particle can be described
by
Ls == 9 = —¢"r"90"y
1. Demonstrate that this Lagrangian density remains invariant under the following phase trans-
formation:

P(x) — §'(x) = P(x)e " , 0 isa constant.

{ww—wwwsz%m

where 7° = 9192939* and verify the following relations: {7°,7*} = 0, (75)+ = 9% et
(1) =1

2. Employ the Noether Theorem to identify the conserved quantities associated with this trans-
formation.

39/ If we set:

pu(x) = (H57) 9(®)
gr(x) = (55) p(x)

1. Rewrite the expression for the Lagrangian density £3 in terms of i and .

2. Examine the invariance of the Lagrangian density £3 under the following phase transforma-
tion.

{wm—+%m:wuww

Pr(x) — l/J;q(X) = r(x) , aisa constant.
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