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This handout is intended for first-year zing in Theoretical Physics. This
educational material contains the basic e ry for learning the subject "Quantum
Fieid Theory I". In addition to a detailed course, the handout contains a series of corrected
exercises, capable of introducing the student to the field of relativistic quantum mechanics. This
work is the result of many years of research and preparation, lasting moïe than eight years
of hard work. Teaching the quantum field theory course since the first year of the launch of
the "Theoretical Physics" specialty within the Department of Material Sciences located at Diillali
Bounaama Khemis Mihana University (UDBKM), has allowed me to have a broader vision of the
subject, which has given me the opportunity to choose the most effective methods for transferring
my knowledge to the students.

The handout is written in âccordance with the template, it offers students the opportunity to
deepen their previously acquired knowledge in the field of both quantum mechanics and special
relativity theories, while taking into account the contributions ofrelectromagnetism theory and
analytical mechanict$reory. . .

Title of the Master's Degree : Theoretical Physics

De*ËterT
Title of UE : Fundamental UEF1.1

Title of the subject : Quantum Field Theory I
Credits : 6

Coefficients : 3

Educational objectives:

' - Understanding the concept of global and local symmetry in quantum field theory and their
implications.

Recommended prior knowledge:

- Quantum mechanics, analytical mechanics, electromagnetism, and special relativity.
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2."1, Basic principle of quan

Lr a general case, a scalar field is associated with that possesses zero spin. To
characterize N particles, one defines N scalar fields. Consequently, the system comprising these
N fields will be represented by a Lagrangian density of the following form,

L : L (qt,àrtr,Qz,àyQz. -..QN,àyQN,rr,) : L (Q,,àrQi,xy)avec i : 1 ---+ N (2.1)

The motion of these N éèahr fields will be described by the following N Euler-Lagrange equations,

#,-'r(#) :o (2.2)

it is said that the scalar field QQ) is a system with N degrees of freedom. According to its
definition, the scalar field represents the most straightforward scerfriio. Its transformation occr,..s
as follows, k,--

Q@ù: ç'(x!r) (2.3)

- The scalar field (Klein-Gordon field) is used to describe the physics of zero-spin particles
with relativistic speeds c.

- The scalar field can either be real Qeù : Q* (xy), or complex QUù * Q. @r.).

2.1J1 Free scalar field

One possible form of the Lagrangian density that must be chosen to obtain the free Klein-Gordon
equation is given by the following equation.

(a,a, (2.4)- *,) Qer) : o



singular. Our choice is as follows,

L(Q, à pQ, *y) : -) {arO), _ 
**, ç,

in the Euler-Lagrange equations, where Qi : Q : Q*,

#,,(#) :o

(2.5)

(2.6)

() q\

QJA)

{2.11)

-..r'-ôL ). AL

T"" ,p - -m'Q' î@ô: -èvQ'
By substituting into equâiion (s.3.2), we obtain the Klein-Gordon equation

(rrur_*r)Q@ù:o e.7)

2.1,.2 Free complex scalar field
lf E : Q* ' what is the general form of the Lagrangian density that must be selected in order to
obtain the following two equations?

(a,,a,, - *r) QUr,): o , (rrr, - *r) Q.pù : o

Response: Our chorQljs the fqllowing

L(Q,ô.Q,Q*,àyQ*,*t): - (Arù (AyQ.) _ m2QQ*

verification: Let's substitute in both Eurer-Lagrange equations for Qi : Q, Q*,

aL.,(aL \ ^ aL ^/ aL \
aa - dr (a(a,D) ) 

: o' 
do. - ar (3ç;,At ) 

: o

AL " AL \ . AL ).* àL 1 .*i"" ?* 
- -ffi'Q' @ : ^:.ra, fr 

:,*'Q*, 
î@ù - -ôr,Q*.

By substituting into eq.rutiott (s.g.z),we obiain the following two equations,

(unr, - *') Qeù: o , (urun - *r) Q*ey) : o

(2.8)
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2Jl'.3 Complex scalar field in the presence of an external electromagnetic field

What is thg general form of the Lagrangian density that must be chosen to sa!
two equations?

f tan - iqAr) (au - iqAr) -*'7Q@r) = o

f {a, * iqAù(ar + iqAù - *'] Q* (*r) : o

Response: Our choice is as follows,

L(Q,ô,Q,Q*,àyQ*,xy) : - (ar + iqAy) Q. (ày - iqAr,) Q - *zQQ. (2.19

\i-



A review of quantum mechanics

3.1 Introduction

Several attempts were necessary before arriving at the current formulation of quantum mechan-
ics. Specifically, in the mid-1920s, there were two competing approaches to model quantum
phenomena: that of Heisenberg, Born, Jordan, and Dirac, called the matrix mechanics, and that
of Schrödinger, called wave mechanics.
Before detailing these two theories, let us recall the essential points of classical mechanics (analyt-
ical mechanics). The latter is based on the Lagrangian formalism.

3.2 Recall the formalism of Lagrange

Lagrange’s formalism is an extremely powerful tool for describing the evolution of a physical
problem. Initially approached in the form of the principle of least action, it allows to determine
the behavior of a system as soon as the expression of a physical quantity, the Lagrangian, is
known. The aim of this reminder is to review the fundamental concepts of Lagrangian theory,
first in the context of studying a massive particle, and then in the field theory.

3.2.1 Principle of least action

Given an initial state, a physical system has an infinite number of ways to evolve towards a final
state:

8
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Figure 3.1: Conversion in the space of generalized coordinates

Therefore, during a real transformation, only one of these changes (evolutions) is actually carried
out. How can we determine this preferred evolution and differentiate it from the others? This
question is answered by the principle of least action, which can be considered as one of the
postulates of physics.
According to the principle of least action, there exists a quantity called "Action" defined by,

S[q] =
∫ t2

t1

dt L(qi(t), q̇i(t), t) , i = 1 −→ N (3.1)

The value of the system changes during its evolution and must remain minimal throughout the
actual transformation. The action S is defined as the integral of a quantity known as the "La-
grangian," which is a function of the generalized coordinates q and the generalized velocities
q̇(t) = dq

dt .

3.2.2 Euler-Lagrange equations

Among all the paths that connect the two fixed points (δq(t1) = δq(t2) = 0) with generalized
coordinates Q1 = q(t1) and Q2 = q(t2), the physical trajectories are those that minimize the
action S, such that ∆S ' 0.
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Figure 3.2: Transformation in the space of generalized coordinates

In case δ(q(t)) is a infinitesimal function, then,

∆S[q] ' S(q + δq)− S(q) (3.2)

On a

S[q] =
∫ t2

t1

dt L(q, q̇, t) =⇒ ∆S[q] =
∫ t2

t1

dt[ L(q + δq, q̇ + δq̇, t)− L(q, q̇, t)] (3.3)

Or,

L(q + δq, q̇ + δq̇, t) = L(q, q̇, t) +
∂L(q, q̇, t)

∂q
δq +

∂L(q, q̇, t)
∂q̇

δq̇ (3.4)

Therefore,

∆S[q] =
∫ t2

t1

dt
[

L(q, q̇, t) +
∂L(q, q̇, t)

∂q
δq +

∂L(q, q̇, t)
∂q̇

δq̇− L(q, q̇, t)
]

=
∫ t2

t1

dt
[

∂L(q, q̇, t)
∂q

δq +
∂L(q, q̇, t)

∂q̇
δq̇
]
' 0 (3.5)

If we set that
δq̇ =

d
dt
(δq) =⇒ ∂L(q, q̇, t)

∂q̇
δq̇ =

∂L
∂q̇

d
dt
(δq) (3.6)

We have also,

d
dt

[
∂L
∂q̇

δq
]
=

d
dt

[
∂L
∂q̇

]
δq +

∂L
∂q̇

d
dt
(δq) =⇒ ∂L

∂q̇
d
dt
(δq) =

d
dt

[
∂L
∂q̇

δq
]
− d

dt

[
∂L
∂q̇

]
δq (3.7)
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By substituting into equation (3.5), we find,

∆S[q] =
∫ t2

t1

dt
[

∂L
∂q

δq +
d
dt

[
∂L
∂q̇

δq
]
− d

dt

[
∂L
∂q̇

]
δq
]

=
∫ t2

t1

dtδq
[

∂L
∂q
− d

dt

[
∂L
∂q̇

]]
+
∫ t2

t1

dt
d
dt

[
∂L
∂q̇

δq
]
' 0 (3.8)

where ∫ t2

t1

dt
d
dt

[
∂L
∂q̇

δq
]
=
∫ t2

t1

d
[

∂L
∂q̇

δq
]
=

[
∂L
∂q̇

δq
]
= 0 (3.9)

Finally, the Euler-Lagrange equations are expressed as

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0 (3.10)

3.2.3 Lagrangian selection

The choice of the Lagrangian is not unique.

– If we replace the Lagrangian L with (αL), where α is a real number, then the equations of
motion remain unchanged.

– If we replace the Lagrangian L with (β + L), where β is a constant, then the equations of
motion remain unchanged.

– If we replace the Lagrangian L with (L + dF
dt ), where F = F(q, q̇, t) is a function, then the

equations of motion remain unchanged.

Exercice 1 :
Show that the variation ∆S remains invariant under the change of the Lagrangian L to L + dF

dt .

3.2.4 Hamiltonian formulation

The Hamiltonian H is given by
H(p, q, t) = Piq̇i − L (3.11)

The generalized momentum is given by

Pi =
∂L
∂q̇i

(3.12)
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Exercice 2 :
Show that if the Lagrangian L does not explicitly depend on time t, then dH

dt = 0.
Solution 3:

dH
dt

= p
∂q̇
∂t

+ q̇
∂p
∂t
− ∂L

∂q
∂q
∂t
− ∂L

∂q̇
∂q̇
∂t

(3.13)

Or, we have

p =
∂L
∂q̇

et
∂L
∂q
− d

dt
∂L
∂q̇

= 0 (3.14)

Therefore,
dH
dt

=

(
∂

∂t

(
∂L
∂q̇

)
− ∂L

∂q

)
∂q
∂t

= −
(

∂L
∂q
− ∂

∂t

(
∂L
∂q̇

))
∂q
∂t

= 0 (3.15)

3.3 Wave modeling

Due to the wave-like nature of matter, we need to take a closer look at what a wave is and
the appropriate method to use to mathematically model its movement in spacetime. From a
mathematical point of view, the dynamic of a wave can be described by solving the following
wave equation:

�φ = 0 (3.16)

where the d’Alembertian operator is given by the expression

� := −∂tt + ∆

A wave will then be modeled by a function φ, which is a solution of the equation (3.16). An
obvious solution to the equation (3.16) is the function

φ(x, t) = φoei(k·x−ωt) (3.17)

where x represents the position vector, t the time, k the wave vector (i.e., the wave propagation
vector), ω is the wave frequency, and x · k is the dot product.
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3.4 Schrödinger equation

The idea here is to model particles in the same way as waves, namely by a function ψ. The
probability of finding the particle at time t is equal to

∫
|ψ(x, t)|2dx. (3.18)

This implies that ∫
R3
|ψ(x, t)|2dx = 1. (3.19)

The fundamental principle of wave mechanics is stated as follows
The wave function ψ of a particle with mass m moving in vacuum and subjected to no interactions
satisfies the Schrödinger equation

ih̄∂tψ = − h̄2

2m
∆ψ (3.20)

h̄ is a universal constant known as the Planck constant, and ∆ is a spatial Laplacian, with the
following sign convention:

∆ = ∂11 + ∂22 + ∂33.

The Planck constant, denoted as h̄, has dimensions of energy multiplied by time, or equivalently,
momentum multiplied by length. Its value is expressed in Joule-seconds:

h̄ = 1, 054571628× 10−34 J.s

The wave function ψ of a particle placed in a potential V(x, t) satisfies:

ih̄∂tψ = − h̄2

2m
∆ψ + Vψ. (3.21)

3.5 Harmonic oscillator

This section will be addressed as an exercise (see exercise 3).
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3.6 Pauli equation

This section will be addressed as an exercise (see exercise 4).

3.7 Application exercises

Exercice 3 :
At time to, the state of the one-dimensional linear harmonic oscillator system is described by
φ(x, 0) = ea+ψ0(x); where ψn(x) are the eigenfunctions of Ho = h̄ω(a+a + 1

2) corresponding to
the eigenvalues En = h̄ω(n + 1

2), where n is an integer.

1. What is the normalized wave function at time t?

2. What is the probability of finding the energy E at time t?

Exercice 4 :

1. Using the product of Pauli matrices given by the formulae: σiσj = δij + iεijkσk, show that

(−→σ −→A )(−→σ −→B ) =
−→
A
−→
B + i−→σ (

−→
A ∧−→B )

when
−→
A and

−→
B commute with −→σ .

2. Find the general form of the free Pauli equation.



A review of special relativity

4.1 Overview of the laws of electromagnetism

4.1.1 Maxwell equations

The laws of electromagnetism can be expressed as follows

– As a function of the electric field (
−→
E ) and the magnetic field (

−→
B ).

– As a function of the vector potential (
−→
A ) and scalar potential (φ).

Maxwell expressed the laws of electromagnetism in the form of the following four equations:

div · −→D = ρ (4.1)

div · −→B = 0 (4.2)

−→
rot
−→
H =

−→
j +

∂
−→
D

∂t
(4.3)

−→
rot
−→
E = −∂

−→
B

∂t
(4.4)

The equations (4.1), (4.3), (4.4) represent Gauss’s law, Maxwell-Ampere’s law and Lenz-Faraday’s
law respectively.

–
−→
D is the electrical displacement vector.

–
−→
H is the excitation field vector.

– ρ is an electrical charge density.

–
−→
j is an electric charge current.

15
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These vectors are related to the electric field
−→
E and the magnetic field

−→
B by the next equations:

−→
D = ε

−→
E (4.5)

−→
B = µ

−→
H (4.6)

Where ε is the dielectric permittivity and µ the magnetic permeability of the medium. In vacuum,
the equations (4.5) and (4.6) become

−→
D = εo

−→
E (4.7)

−→
B = µo

−→
H =⇒ −→H =

−→
B
µo

(4.8)

Where εo and µo are two constants given respectively by: εo = 8.854 pF m−1 and µ0 = 4π ×
10−7 Henry/meter.
By introducing the operator

−→∇ , the previous equations become:

−→∇ · −→D = ρ (4.9)

−→∇ · −→B = 0 (4.10)

−→∇ ∧−→H =
−→
j +

∂
−→
D

∂t
(4.11)

−→∇ ∧−→E = −∂
−→
B

∂t
(4.12)

By replacing the equations (4.7) and (4.8) in the equations (4.9), (4.10), (4.11) and (4.12), we find:

−→∇ · (εo
−→
E ) = ρ =⇒ −→∇ · −→E =

ρ

εo
(4.13)

−→∇ · −→B = 0 (4.14)

−→∇ ∧
(−→

B
µo

)
=
−→
j +

∂

∂t

(−→
εoE
)
=⇒ −→∇ ∧−→B = µo

−→
j + µoεo

∂
−→
E

∂t
(4.15)
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−→∇ ∧−→E = −∂
−→
B

∂t
(4.16)

The Lorentz force acting on a particle with charge q and velocity overrightarrowV is given by

−→
F = q(

−→
E +

−→
V ∧−→B ) (4.17)

The charge conservation equation is given by,

−→∇ · −→j +
∂ρ

∂t
= 0 (4.18)

Ramarque:

– Maxwell’s equations and the equation for the conservation of electric charge are valid at all
points in the medium and at all times. They are, therefore, local equations.

4.1.2 Vector and scalar potentials

The magnetic field
−→
B and the electric field

−→
E are derived from the Lorentz potentials

−→
A and φ,

where
−→
E = −

−−→
gradφ− ∂

−→
A

∂t
(4.19)

−→
B =

−→
rot
−→
A (4.20)

The latter equations can be rewritten in terms of
−→∇ ,

−→
E = −−→∇ · φ− ∂

−→
A

∂t
(4.21)

−→
B =

−→∇ ∧−→A (4.22)

Ramarque:

In vacuum, the potential vectors
−→
A and scalar φ satisfy the following equation:

div
−→
A + µoεo

∂φ

∂t
= 0 (4.23)
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This equation is known as the Lorentz Gauge. This equation can be written as a function of
−→∇ ,

−→∇ · −→A + µoεo
∂φ

∂t
= 0 (4.24)

We have,
µoεoc2 = 1 =⇒ c = 1/

√
µoεo (4.25)

Using Maxwell’s equations and the Lorentz gauge, we obtain:

∆φ− 1
c2

∂2φ

∂2t
= 0 (4.26)

∆
−→
A − 1

c2
∂2−→A
∂2t

= 0 (4.27)

Solving these two equations gives the values of the potentials φ and
−→
A .

4.2 Vector analysis in Minkowski space

The "quadi-nabla" operator is introduced into Minkowski’s four-dimensional space and defined
as follows:

−→
∂ =

(−→∇ ,−1
c

∂

∂t

)
(4.28)

of components,

∂1 =
∂

∂x
, ∂2 =

∂

∂y
, ∂3 =

∂

∂z
, ∂4 = −1

c
∂

∂t
(4.29)

4.2.1 Quadri-divergence and quadri-gradient

Let be the quadri-vector
−→
A , with components:

−→
A = (ax, ay, az, a4) = (−→a , a4) où −→a = (ax, ay, az) (4.30)
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The metric of the Minkowski space is given by (+,+,+,−). So the scalar product of two quadri-
vectors

−→
A and

−→
B is given by

−→
A · −→B =


ax

ay

az

a4

 ·


bx

by

bz

b4

 = +axbx + ayby + azbz − a4b4 (4.31)

The quadri-divergence of a quadri-vector
−→
V is given by

−→
∂ · −→V =


∂

∂x
∂

∂y
∂
∂z
−1

c
∂
∂t

 ·


vx

vy

vz

v4

 = +
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
+

1
c

∂v4

∂t
(4.32)

which can also be written as,

−→
∂ · −→V =

(−→
∂ ,−1

c
∂

∂t

)
· (−→v , v4) =

(−→
∂ −→v ,−1

c
∂v4

∂t

)
(4.33)

In the same way, we define the quadri-gradient of a φ scalar function as,

−→
∂ φ =

(−→
∂ φ,−1

c
∂φ

∂t

)
(4.34)

4.2.2 Quad-vector current density

The equation (4.18) expresses the principle of conservation of charge. This equation can be written
as

∂ρ

∂t
+
−→∇ · −→j = 0 =⇒ ∂jx

∂x
+

∂jy
∂y

+
∂jz
∂z

+
1
c

∂

∂t
(cρ) = 0 (4.35)

which can be written as:

∂jx
∂x

+
∂jy
∂y

+
∂jz
∂z
−
(
−1

c
∂

∂t

)
(cρ) = 0 =⇒

(−→
∂
−→
j ,−1

c
∂

∂t
(ρc)

)
= 0 (4.36)
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This equation appears as the quadri-divergence of a quadri-vector(−→
∂ ,−1

c
∂

∂t

)(−→
j , ρc

)
= 0 =⇒

−→
∂
−→
J = 0 (4.37)

Equation (4.37) represents the writing of the charge conservation equation in Minkowski space
and the current quadri-vector is given by,

−→
J =

(−→
j , ρc

)
(4.38)

4.2.3 Quad-vector potential

The Lorentz gauge given in the equation (??) can be rewritten as follows,

−→∇ · −→A +
1
c2

∂φ

∂t
= 0 =⇒ ∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
+

1
c

∂

∂t

(
φ

c

)
= 0 (4.39)

which can be written as:

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
−
(
−1

c
∂

∂t

)(
φ

c

)
= 0 =⇒

(−→
∂
−→
A ,−1

c
∂

∂t
φ

c

)
= 0 (4.40)

This equation appears as the quadri-divergence of a quadri-vector(−→
∂ ,−1

c
∂

∂t

)(−→
A ,

φ

c

)
= 0 =⇒

−→
∂
−→
A = 0 (4.41)

Equation (4.41) represents the writing of the Lorentz gauge in Minkowski space and the potential
quadri-vector is given by,

−→
A =

(−→
A ,

φ

c

)
(4.42)

4.2.4 Electromagnetic field tensor

The fields
−→
E and

−→
B are given as functions of the potentials φ and

−→
A by the two equations (4.21)

and (4.22).
Writing the equation (4.21) in three-dimensional space gives:

−→
E = −−→∇φ− ∂

−→
A

∂t
=⇒ (4.43)



21

Ex = −∂φ

∂x
− ∂Ax

∂t
(4.44)

Ey = −∂φ

∂y
−

∂Ay

∂t
(4.45)

Ez = −
∂φ

∂z
− ∂Az

∂t
(4.46)

These last equations can be rewritten in the following form:

Ex = −c
∂

∂x

(
φ

c

)
− c

1
c

∂Ax

∂t
(4.47)

Ey = −c
∂

∂y

(
φ

c

)
− c

1
c

∂Ay

∂t
(4.48)

Ez = −c
∂

∂z

(
φ

c

)
− c

1
c

∂Az

∂t
(4.49)

Now, taking c as a factor, we find:

Ex

c
= − ∂

∂x

(
φ

c

)
− 1

c
∂Ax

∂t
(4.50)

Ey

c
= − ∂

∂y

(
φ

c

)
− 1

c
∂Ay

∂t
(4.51)

Ez

c
= − ∂

∂z

(
φ

c

)
− 1

c
∂Az

∂t
(4.52)

Writing the equation (4.22) in three-dimensional space gives:

−→
B =

−→∇ ∧−→A =⇒ (4.53)

Bx =
∂Az

∂y
−

∂Ay

∂z
(4.54)

By = −
[

∂Az

∂x
− ∂Ax

∂z

]
=⇒ By =

∂Ax

∂z
− ∂Az

∂x
(4.55)
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Bz =
∂Ay

∂x
− ∂Ax

∂y
(4.56)

4.2.5 Change of variable

A point in Minkowski space is represented by the quadri-vector position
x
y
z
−ct

 (4.57)

Let’s make the following change of variables:
x = x1

y = x2

z = x3

−ct = x4

=⇒


∂

∂x = ∂
∂x1

∂
∂y = ∂

∂x2
∂
∂z = ∂

∂x3

−1
c

∂
∂t =

∂
∂x4

=⇒


∂

∂x1
= ∂1

∂
∂x2

= ∂2
∂

∂x3
= ∂3

∂
∂x4

= ∂4

(4.58)


Ax = A1

Ay = A2

Az = A3
φ
c = A4

(4.59)

The equations (4.50), (4.51), (4.52), (4.54), (4.55) and (4.56) become,

Ex

c
= −∂1A4 + ∂4A1 (4.60)

Ey

c
= −∂2A4 + ∂4A2 (4.61)

Ez

c
= −∂3A4 + ∂4A3 (4.62)

Bx = ∂2A3 − ∂3A2 (4.63)
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By = ∂3A1 − ∂1A3 (4.64)

Bz = ∂1A2 − ∂2A1 (4.65)

These six equations can be written in the following general form

Fµν = ∂µ Aν − ∂ν Aµ, µ, ν = 1, 2, 3, 4 (4.66)

Where the coefficients Fµν are the matrix elements of a tensor in Minkowski space, called the
"electromagnetic field tensor" and given by,

Fµν =


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

 (4.67)

The tensor is antisymmetric Fµ = −Fµ and Fµ = 0. Therefore, the matrix elements of the electro-
magnetic field tensor are given by,

Ex

c
= −∂1A4 + ∂4A1 = F41 = −F14 (4.68)

Ey

c
= −∂2A4 + ∂4A2 = F42 = −F24 (4.69)

Ez

c
= −∂3A4 + ∂4A3 = F43 = −F34 (4.70)

Bx = ∂2A3 − ∂3A2 = F23 = −F32 (4.71)

By = ∂3A1 − ∂1A3 = F31 = −F13 (4.72)

Bz = ∂1A2 − ∂2A1 = F12 = −F21 (4.73)
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Finally, the electromagnetic field tensor is given by,

Fµν =


0 Bz −By −Ex

c

−Bz 0 Bx −Ey
c

By −Bx 0 −Ez
c

Ex
c

Ey
c

Ez
c 0

 (4.74)

4.3 Exercises

Exercice 5 :
The electric and magnetic fields

−→
E1 and

−→
B1 , measured by an observer O linked to a Galilean

reference frame R, are given in terms of the scalar and vector potentials φ1,
−→
A1 by the equations

−→
E1 = −

−−→
grad φ1 −

∂
−→
A1

∂t
,
−→
B1 =

−→
rot
−→
A1

1. Give the expression for the components of the fields
−→
E1 and

−→
B1 in the reference frame R.

2. Find the components of the electromagnetic tensor.

3. What are the new values of the fields
−→
E1
′

and
−→
B1
′
, measured by an observer O

′
linked to a

Galilean reference frame R
′

moving at a constant speed −→v relative to R?

Exercice 6 :

– Find the probability current of the Schrodinger equation
−→
j which verifies the equation

∂ρ

∂t
+
−→∇−→j = 0

We give : ρ = ψ∗(~r, t)ψ(~r, t)



Symmetry and invariance

5.1 Definition

A physical law is said to be invariant when it remains unchanged by a change of coordinates and
variables.

Example:

In classical mechanics:

– The coordinates are represented by: −→r , t,· · · .

– The variables are represented by: −→r (t), −→p (t), · · · .

In quantum mechanics:

– The coordinates are represented by:
(−→r , t

)
, · · · .

– The variables are represented by: ψ
(−→r , t

)
, ψ (t), · · · .

In analytical mechanics:

– The coordinates are represented by: q (t), p (t) · · · .

– The variables are represented by: q̇ (t) = − ∂H
∂pi

, ṗ (t) = − ∂H
∂qi

, · · · .

5.2 Types of transformations

There are two kinds of transformation:

5.2.1 Geometric transformations

The geometric transformations that exist are:

25
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– Moving in space.

– Moving in time.

– Rotation.

– Time reversal T.

– Inversion of the origin P.

5.2.2 Internal transformations

A particle can undergo the following internal transformations:

– Interchanging identical particles.

– Interchanging particles and anti-particles. This transformation is often called "charge conju-
gation", which is denoted C.

Remarque:

The three transformations C, P, T are discrete transformations.

5.2.3 Internal geometric transformations

For this type of transformation, we can cite the Galilean transformation, given by{ −→r → −→r ′ = −→r +−→v t
t→ t

′
= t

(5.1)

5.3 Symmetries and conservation laws

In this section, it will be assumed that the Lagrangian density does not depend explicitly on (xµ).
It will also be assumed that the equations of motion (and hence the action) remain unchanged
during an infinitesimal (continuous) transformation defined by,{

xµ −→ x
′
µ = xµ + δxµ

φ(xµ) −→ φ
′
(x
′
µ) = φ(xµ) + δφ(xµ)

(5.2)
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with, 
xµ −→ position spatio-temporelle (coordonnées)
δxµ −→ variation infinitisimale (deplacement l’espace et dans le temps)
φ(xµ) −→ champ scalaire (variable)
δφ(xµ) −→ variation de phase (dûe à une rotation)

5.3.1 Example of transformation

Space-time transformation

A space-time transformation is defined by{
xµ −→ x

′
µ = xµ + aµ , (aµ = δxµ)

φ(xµ) −→ φ
′
(x
′
µ) = φ(xµ) , (δφ(xµ) = 0)

(5.3)

Where aµ represents the quadri-vector displacement in space-time.
According to the infinitesimal transformation given in equation (5.3),

φ
′
(x
′
µ) = φ

′
(xµ + aµ) = φ(xµ) (5.4)

therefore;
φ
′
(xµ + aµ) = φ(xµ) (5.5)

Global phase transformation (φ(xµ) 6= φ∗(xµ))

This transformation is given by,{
xµ −→ x

′
µ = xµ , (δxµ = 0)

φ(xµ) −→ φ
′
(x
′
µ) = φ(xµ) + δφ(xµ) = e−iqθ(xµ)φ(xµ)

(5.6)

Where theta(xµ) is a real scalar.
According to the infinitesimal transformation given in equation (5.6),

φ
′
(x
′
µ) = φ

′
(xµ) = φ(xµ) + δφ(xµ) = e−iqθ(xµ)φ(xµ) (5.7)

therefor,
φ
′∗(xµ) = e+iqθ(xµ)φ∗(xµ) (5.8)
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Local phase transformation (φ(xµ) = φ∗(xµ))

This transformation is given by,{
xµ −→ x

′
µ = xµ , (δxµ = 0)

φ(xµ) −→ φ
′
(x
′
µ) = φ(xµ) + δφ(xµ) = e−iqθ(xµ)φ(xµ)

(5.9)

Where theta(xµ) is a real scalar.
According to the infinitesimal transformation given in equation (5.9),

φ
′
(x
′
µ) = φ

′
(xµ) = φ(xµ) + δφ(xµ) = e−iqθ(xµ)φ(xµ) (5.10)

therefor,
φ
′∗(xµ) = e+iqθ(xµ)φ(xµ) (5.11)

5.3.2 Noether’s theorem

Statement

For any continuous transformation of the action S, there is a current Jµ satisfying the equation

∂µ Jµ = 0 (5.12)

This implies that there is a self-preserving charge, defined by

Q =
∫

ρ d3x (5.13)

Demonstration

The equations of motion are said to be invariant if the action S is stationary.

δS = S
′ − S ' 0 (5.14)

We have
S =

∫
d4xL(φ, ∂µφ)⇒ S

′
=
∫

d4x
′ L(φ′ , ∂

′
µφ
′
) (5.15)
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Given L = L(φ, ∂µφ) (where the Lagrangian density does not have explicit dependence on xµ).
Let us consider infinitesimal transformations of the form,{

xµ −→ x
′
µ = xµ + δxµ

φ(xµ) −→ φ
′
(x
′
µ) = φ(xµ) + δφ(xµ)

(5.16)

where
δφ(x) = φ

′
(x
′
)− φ(x) (5.17)

The symbol δφ(xµ) represents the variation of the field due to both the transformation of the field
(variable) and the transformation of the coordinates (xµ).
Thus, the change at a specific point in 4-dimensional space is determined by

δoφ(x) = φ
′
(x)− φ(x) , pour x

′
= x (5.18)

The relationship between the spacetime derivatives is expressed by

d4x
′
= [1 + ∂µ(δxµ)]d4x (5.19)

Let’s now examine the relationship between the field variation at two different points δφ and the
field variation at a fixed point δoφ.
The variation of the field at two different points is given by

δφ(x) = φ
′
(x
′
)− φ(x) = φ

′
(x
′
)− φ

′
(x) + φ

′
(x)− φ(x) (5.20)

δφ(x) = φ
′
(x) + (∂νφ)δxν − φ

′
(x) + δoφ(x) (5.21)

with
φ
′
(x
′
) = φ

′
(xµ + δxµ) = φ

′
(xµ) + (∂νφ)δxν = φ

′
(x) + (∂νφ)δxν (5.22)

Therefor,
δφ(x) = δoφ(x) + (∂νφ)δxν (5.23)

Let us calculate the term ∂
′
µφ
′

We have
∂
′
µφ
′
(x
′
) = ∂

′
µ(φ + δφ) =

∂

∂x′µ
(φ + δφ) (5.24)
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=
∂

∂xν

∂xν

∂x′µ
(φ + δφ) =

∂

∂xν
(φ + δφ)

∂xν

∂x′µ
(5.25)

We have also
x
′
ν = xν + δxν ⇒ xν = x

′
ν − δxν (5.26)

Therefor
∂xν

∂x′µ
=

∂x
′
ν

∂x′µ
+

∂

∂x′µ
(δxν) (5.27)

Finally, we get
∂xν

∂x′µ
= δµν − ∂µ(δxν) (5.28)

By substituting the equation (??) into equation (5.24), we obtain

∂
′
µφ
′
(x
′
) =

∂

∂xν
(φ + δφ)

∂xν

∂x′µ
(5.29)

=

(
∂φ

∂xν
+

∂

∂xν
(δφ)

)
(δµν − ∂µ(δxν)) (5.30)

= (∂νφ + ∂ν(δφ)) (δµν − ∂µ(δxν)) (5.31)

= (∂νφ)δµν − (∂νφ)∂µ(δxν) + ∂ν(δφ)δµν − ∂ν(δφ)∂µ(δxν) (5.32)

∂
′
µφ
′
(x
′
) = (∂µφ)− (∂νφ)∂µ(δxν) + ∂µ(δφ) (5.33)

The term ∂ν(δφ)∂µ(δxν) is neglected, as it is a higher-order term.
The Lagrangian density does not explicitly depend on xµ, which implies that L = L(φ, ∂µφ).
Therefor,

L(φ′ , ∂
′
µφ
′
) = L(φ + δφ, (∂µφ)− (∂νφ)∂µ(δxν) + ∂µ(δφ)) (5.34)

= L(φ, ∂µφ) +
∂L
∂φ

δφ +
∂L

∂(∂µφ)
[∂µ(δφ)− (∂νφ)∂µ(δxν)] (5.35)

we get

L(φ′ , ∂
′
µφ
′
) = L(φ, ∂µφ) +

∂L
∂φ

δφ +
∂L

∂(∂µφ)
∂µ(δφ)− ∂L

∂(∂µφ)
(∂νφ)∂µ(δxν) (5.36)
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By substituting the equation (5.19) into the equation (5.14), one arrives at the following result

δS =
∫

d4x
′ L(φ′ , ∂

′
µφ
′
)−

∫
d4xL(φ, ∂µφ) ' 0 (5.37)

=
∫
[1 + ∂µ(δxµ)]d4xL(φ′ , ∂

′
µφ
′
)−

∫
d4xL(φ, ∂µφ) ' 0 (5.38)

δS =
∫
[L(φ′ , ∂

′
µφ
′
)−L(φ, ∂µφ) + ∂µ(δxµ)L]d4x ' 0 (5.39)

Let us calculate the following term: L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ)

L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ) = L(φ, ∂µφ) +

∂L
∂φ

δφ +
∂L

∂(∂µφ)
∂µ(δφ)− ∂L

∂(∂µφ)
(∂νφ)∂µ(δxν)−L(φ, ∂µφ)

L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ) =

∂L
∂φ

δφ +
∂L

∂(∂µφ)
∂µ(δφ)− ∂L

∂(∂µφ)
(∂νφ)∂µ(δxν) (5.40)

According to the Euler-Lagrange equations,

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0

then
∂L
∂φ

= ∂µ

(
∂L

∂(∂µφ)

)
(5.41)

We have also
∂µ

(
∂L

∂(∂µφ)
δφ

)
= ∂µ

(
∂L

∂(∂µφ)

)
δφ +

∂L
∂(∂µφ)

∂µ(δφ)

Therefor
∂L

∂(∂µφ)
∂µ(δφ) = ∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂µ

(
∂L

∂(∂µφ)

)
δφ (5.42)

By replacing equations (5.41) and (5.42) in equation (5.40), we obtain

L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ) = ∂µ

(
∂L

∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂µ

(
∂L

∂(∂µφ)

)
δφ− ∂L

∂(∂µφ)
(∂νφ)∂µ(δxν)

L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ) = ∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂L

∂(∂µφ)
(∂νφ)∂µ(δxν) (5.43)
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We have
δφ = δoφ + (∂νφ)δxν

Then
∂µ

(
∂L

∂(∂µφ)
δφ

)
= ∂µ

(
∂L

∂(∂µφ)
(δoφ + (∂νφ)(δxν))

)

∂µ

(
∂L

∂(∂µφ)
δφ

)
= ∂µ

(
∂L

∂(∂µφ)
δoφ

)
+ ∂µ

(
∂L

∂(∂µφ)
(∂νφ)(δxν)

)
(5.44)

Let us calculate the term ∂µ

(
∂L

∂(∂µφ)
(∂νφ)(δxν)

)
:

∂µ

(
∂L

∂(∂µφ)
(∂νφ)(δxν)

)
= ∂µ

(
∂L

∂(∂µφ)

)
(∂νφ)(δxν)+

∂L
∂(∂µφ)

∂µ ((∂νφ)) (δxν)+
∂L

∂(∂µφ)
(∂νφ)∂µ (δxν)

By neglecting higher order terms, one can find

∂µ

(
∂L

∂(∂µφ)
(∂νφ)(δxν)

)
= ∂µ

(
∂L

∂(∂µφ)

)
(∂νφ)(δxν) +

∂L
∂(∂µφ)

(∂νφ)∂µ (δxν) (5.45)

Therefor

∂µ

(
∂L

∂(∂µφ)
δφ

)
= ∂µ

(
∂L

∂(∂µφ)
δoφ

)
+ ∂µ

(
∂L

∂(∂µφ)

)
(∂νφ)(δxν) +

∂L
∂(∂µφ)

(∂νφ)∂µ (δxν) (5.46)

By inserting equation (5.46) into equation (5.43), we get

L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ) = ∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂L

∂(∂µφ)
(∂νφ)∂µ(δxν)

= ∂µ

(
∂L

∂(∂µφ)
δoφ

)
+ ∂µ

(
∂L

∂(∂µφ)

)
(∂νφ)(δxν) +

∂L
∂(∂µφ)

(∂νφ)∂µ (δxν)−
∂L

∂(∂µφ)
(∂νφ)∂µ (δxν)

So,

L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ) = ∂µ

(
∂L

∂(∂µφ)
δoφ

)
+ ∂µ

(
∂L

∂(∂µφ)

)
(∂νφ)(δxν)

Calculating the term ∂µ

(
∂L

∂(∂µφ)

)
(∂νφ)(δxν):

∂µ

(
∂L

∂(∂µφ)

)
(∂νφ)(δxν) =

∂L
∂φ

(∂νφ)(δxν) =
∂L
∂xµ

∂xµ

∂φ

∂φ

∂xν
δxν
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=
∂L
∂xµ

∂xµ

∂∂xν
δxν =

∂L
∂xµ

δµνδxν = ∂µL δxµ

Finally, we get

L(φ′ , ∂
′
µφ
′
)−L(φ, ∂µφ) = ∂µ

(
∂L

∂(∂µφ)
δoφ

)
+ ∂µL δxµ (5.47)

The variation of the action in the equation (5.39) becomes

δS =
∫ [

∂µ

(
∂L

∂(∂µφ)
δoφ

)
+ ∂µL δxµ + ∂µ(δxµ)L

]
d4x ' 0

We have
∂µL δxµ + ∂µ(δxµ)L = ∂µ(L δxµ)

Then,

δS =
∫ [

∂µ

(
∂L

∂(∂µφ)
δoφ

)
+ ∂µ(L δxµ)

]
d4x ' 0

δS =
∫

∂µ

[(
∂L

∂(∂µφ)
δoφ

)
+ L δxµ

]
d4x ' 0

⇒ ∂µ

[
∂L

∂(∂µφ)
δoφ + L δxµ

]
= 0

The final equation can be expressed in the following form

∂µ Jµ = 0

with
Jµ =

∂L
∂(∂µφ)

δoφ + L δxµ −→ Courant de Noether

Exercice 7 :

1. Demonstrate that the Lagrangian density of the free complex scalar field remains invariant
under the following global phase transformation{

φ(x) −→ φ
′
(x) = eiθφ(x)

φ∗(x) −→ φ
′∗(x) = e−iθφ∗(x)

θ is a real constant that does not depend on xµ.

2. What are the currents and charges that are conserved?
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Exercice 8 :
The dynamics of a system consisting of a real scalar field φ1 and two complex scalar fields φ2 and
φ3 is described by the Lagrangian density.

L = −1
2
(∂µφ1)

2 − 1
2

m2
1φ2

1 − (∂µφ∗2)(∂µφ2)−m2
2φ∗2 φ2 − (∂µ + iqAµ)φ

∗
3(∂µ − iqAµ)φ3 −m2

3φ∗3 φ3

In which m1, m2, and m3 represent constants.

1. Find the equations of motion?

2. It is known that the Lagrangian density remains invariant under the following two global
phase transformations.{

φ1(x) −→ φ
′
1(x) = e−iα1φ1(x)

φ∗1(x) −→ φ
′∗
1 (x) = eiα1φ∗1(x)

,

{
φ2(x) −→ φ

′
2(x) = e+iα2φ2(x)

φ∗2(x) −→ φ
′∗
2 (x) = e−iα2φ∗2(x)

α1 and α2 are real constants with no dependence on x.
What are the currents and charges that are conserved in these transformations?

Solution 9:
1o/ The dynamics of a system are characterized by the Lagrangian density,

L = −1
2
(
∂µφ1

)2 − 1
2

m2
1φ2

1 −
(
∂µφ2

) (
∂µφ∗2

)
−m2

2φ2φ∗2 −
(
∂µ + iqAµ

)
φ∗3
(
∂µ − iqAµ

)
φ3 −m2φ3φ∗3

The Lagrangian density can be expressed in the following form:

L = L1 + L2 + L3

a°/: The real scalar field is determined by the following Lagrangian density,

L1(φ1, ∂µφ1, xµ) = −
1
2
(
∂µφ1

)2 − 1
2

m2
1φ2

1

Equations of motion: Let us replace in the Euler-Lagrange equations, where φi = φ1 = φ∗1

∂L1

∂φ1
− ∂µ

(
∂L1

∂(∂µφ1)

)
= 0

with
∂L1

∂φ1
= −m2

1φ1,
∂L1

∂(∂µφ1)
= −∂µφ1.
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The Klein-Gordon equation is obtained by replacing(
∂µ∂µ −m2

1

)
φ1(xµ) = 0

b°/: The complex scalar field is defined by the following Lagrangian density:

L2(φ2, ∂µφ2, φ∗2 , ∂µφ∗2 , xµ) = −
(
∂µφ2

) (
∂µφ∗2

)
−m2

2φ2φ∗2

Equations of motion: Let’s substitute φi = φ2, φ∗2 in both Euler-Lagrange equations,

∂L2

∂φ2
− ∂µ

(
∂L2

∂(∂µφ2)

)
= 0,

∂L2

∂φ∗2
− ∂µ

(
∂L2

∂(∂µφ∗2)

)
= 0

with
∂L2

∂φ∗2
= −m2

2φ2,
∂L2

∂(∂µφ∗2)
= −∂µφ2,

∂L2

∂φ2
= −m2

2φ∗2 ,
∂L2

∂(∂µφ2)
= −∂µφ∗2 .

By substituting into equation (5.3.2), we obtain the following two equations,(
∂µ∂µ −m2

2

)
φ2(xµ) = 0 ,

(
∂µ∂µ −m2

2

)
φ∗2(xµ) = 0

c°/: The Lagrangian density for the complex scalar field in the presence of an external electro-
magnetic field is given by the following expression,

L3(φ3, ∂µφ3, φ∗3 , ∂µφ∗3 , xµ) = −
(
∂µ + iqAµ

)
φ∗3
(
∂µ − iqAµ

)
φ3 −m2φ3φ∗3

Equations of motion for the field φ3: Let’s substitute in the Euler-Lagrange equation for φi = φ∗3 ,

∂L3

∂φ∗3
− ∂µ

(
∂L3

∂(∂µφ∗3)

)
= 0

we have
L3 = −

(
∂µφ∗3

) (
∂µ − iqAµ

)
φ3 − iqAµφ∗3

(
∂µ − iqAµ

)
φ3 −m2φ3φ∗3

with
∂L3

∂φ∗3
= −iqAµ

(
∂µ − iqAµ

)
φ3 −m2

3φ3,
∂L3

∂(∂µφ∗3)
= −

(
∂µ − iqAµ

)
φ3.

By substituting into equation (5.3.2), we obtain the following two equations,

−iqAµ

(
∂µ − iqAµ

)
φ3 −m2

3φ3 + ∂µ

(
∂µ − iqAµ

)
φ3 = 0[(

∂µ − iqAµ

) (
∂µ − iqAµ

)
−m2

3

]
φ3(xµ) = 0
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Equations of motion for the field φ∗3 : Let’s substitute in the Euler-Lagrange equation for φi = φ3,

∂L3

∂φ3
− ∂µ

(
∂L3

∂(∂µφ3)

)
= 0

L3 = −
(
∂µφ3

) (
∂µ + iqAµ

)
φ∗3 + iqAµφ3

(
∂µ + iqAµ

)
φ∗3 −m2φ3φ∗3

with
∂L3

∂φ3
= iqAµ

(
∂µ + iqAµ

)
φ∗3 −m2

3φ∗3 ,
∂L3

∂(∂µφ3)
= −

(
∂µ + iqAµ

)
φ∗3 .

By substituting into equation (5.3.2), we obtain the following two equations,

iqAµ

(
∂µ + iqAµ

)
φ∗3 −m2

3φ∗3 + ∂µ

(
∂µ + iqAµ

)
φ∗3 = 0[(

∂µ + iqAµ

) (
∂µ + iqAµ

)
−m2

3

]
φ∗3(xµ) = 0

2o/ Find the currents and charges associated with the two global phase transformations:
According th Noether’s Theorem

δS =
∫

∂µ

[(
∂L

∂(∂µφi)
δoφi

)
+ L δxµ

]
d4x ' 0

a°/ Current and charge associated with the real scalar field in the transformation:{
φ1(x) −→ φ

′
1(x) = e−iα1φ1(x)

φ∗1(x) −→ φ
′∗
1 (x) = eiα1φ∗1(x)

α1 is a real constant that does not depend on x.
Through the application of Noether’s theorem:

δS =
∫

∂µ

(
∂L1

∂(∂µφ1)
δoφ1 +

∂L1

∂(∂µφ∗1)
δoφ∗1

)
d4x ' 0

with
∂L1

∂(∂µφ∗1)
= 0,

∂L1

∂(∂µφ1)
= −∂µφ1

δoφ1 = φ
′
1 − φ1 = e−iα1φ1 − φ1 = (e−iα1 − 1)φ1 = (1− iα1 − 1)φ1 = −iα1φ1 pour α1 << 1

Therefor,
δS =

∫
∂µ

(
−i(∂µφ1)φ1

)
α1d4x ' 0
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α1 << 1⇒ ∂µ

(
−i(∂µφ1)φ1

)
= 0⇒ ∂µ J1

µ = 0

Therefore, the current of the free real scalar field is given by,

J1
µ = −i(∂µφ1)φ1 = (ji, ρ1), avec ρ1 =

jt
i
= (−∂tφ1)φ1

The charge Q1 related to this transformation is determined by,

Q1 =
∫

d3xρ1 =
∫

d3x (−∂tφ1)φ1

b°/ Current and charge associated with the complex scalar field in the transformation:{
φ2(x) −→ φ

′
2(x) = e+iα2φ2(x)

φ∗2(x) −→ φ
′∗
2 (x) = e−iα2φ∗2(x)

The real number α2 is independent of x.
By applying Noether’s theorem:

δS =
∫

∂µ

[(
∂L2

∂(∂µφ2)
δoφ2

)
+

(
∂L2

∂(∂µφ∗2)
δoφ∗2

)]
d4x ' 0

With
∂L2

∂(∂µφ2)
= −∂µφ∗2 ,

∂L2

∂(∂µφ∗2)
= −∂µφ2

δoφ2 = φ
′
2 − φ2 = eiα2φ2 − φ2 = (eiα2 − 1)φ2 = (1 + iα2 − 1)φ2 = iα2φ2 pour α2 << 1

δoφ∗2 = φ∗
′

2 − φ∗2 = e−iα2φ∗2 − φ∗2 = (e−iα2 − 1)φ∗2 = (1− iα2 − 1)φ∗2 = −iα2φ∗2 pour α2 << 1

Therefor,
δS =

∫
∂µ

(
−i(∂µφ∗2)φ2 + i(∂µφ2)φ

∗
2
)

α2d4x ' 0

α2 << 1⇒ ∂µ

(
−i(∂µφ∗2)φ2 + i(∂µφ2)φ

∗
2
)
= 0⇒ ∂µ J2

µ = 0

The current of the real free scalar field is therefore given by,

J2
µ = −i(∂µφ∗2)φ2 + i(∂µφ2)φ

∗
2 = (ji, ρ2), avec ρ2 =

jt
i
= −(∂tφ

∗
2)φ2 + (∂tφ2)φ

∗
2
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The charge Q1 linked to this transformation is expressed as:

Q2 =
∫

d3xρ2 =
∫

d3x ((∂tφ2)φ
∗
2 − (∂tφ

∗
2)φ2)

5.4 Energy-Momentum Tensor of the scalar field

Since the Lagrangian density L does not explicitly depend on the four-position vector xµ, its
derivative with respect to xµ is as follows

∂µL = ∂µL(φ, ∂µφ) où ∂µ =
∂

∂xµ
(5.48)

Therefor
∂µL =

∂L
∂xµ

(5.49)

We have,

∂µL =
∂L
∂xµ

=
∂L
∂φ

∂φ

∂xµ
+

∂L
∂(∂νφ)

∂(∂νφ)

∂xµ
(5.50)

According to the Euler-Lagrange equation, we have

∂L
∂φ
− ∂µ

(
∂L

∂(∂νφ)

)
= 0 ⇒ ∂L

∂φ
= ∂ν

(
∂L

∂(∂νφ)

)
pour µ = ν (5.51)

Therefor,

∂µL =
∂L
∂xµ

= ∂ν

(
∂L

∂(∂νφ)

)
∂µφ +

∂L
∂(∂νφ)

∂µ (∂νφ) (5.52)

By setting,
∂µ (∂νφ) = ∂ν

(
∂µφ

)
(5.53)

we found that,

∂µL = ∂ν

(
∂L

∂(∂νφ)

)
∂µφ +

∂L
∂(∂νφ)

∂ν

(
∂µφ

)
= ∂ν

(
∂L

∂(∂νφ)
∂µφ

)
(5.54)

The expression ∂µL can also be represented in the following way:

∂µL =
∂L
∂xµ

=
∂L
∂xν

∂xν

∂xµ
= (∂νL) δµν = ∂ν

(
Lδµν

)
(5.55)
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Comparing equations (5.54) and (5.55), we can see that

∂µL = ∂ν

(
∂L

∂(∂νφ)
∂µφ

)
= ∂ν

(
Lδµν

)
(5.56)

Therefor,

∂ν

(
∂L

∂(∂νφ)
∂µφ−Lδµν

)
= 0 (5.57)

Now, if we replace ν by µ

∂µ

(
∂L

∂(∂µφ)
∂νφ−Lδµν

)
= 0 (5.58)

The letter can be rewritten in the following form,

∂µνTµν = 0 avec Tµν =
∂L

∂(∂µφ)
∂νφ−Lδµν (5.59)

The tensor Tµν denotes the energy-momentum tensor of the scalar field.

5.5 Exercises

Exercice 9 :

In the position space {|−→r 〉}, the geometric transformation origin inversion is defined as:

Π |−→r 〉 = |−−→r 〉 ,

Π represents the parity operator.

1. Calculate Π |−→p 〉

2. Calculate Π |ψ(t)〉

3. The transformed
−→
A
′

of an operator
−→
A is defined by

−→
A
′ ≡ Π

−→
A Π−1. Calculate the transforms

of the position, momentum, and angular momentum operators given respectively by
−→
R
′ ≡ Π

−→
R Π−1,

−→
P
′ ≡ Π

−→
P Π−1 and

−→
L
′ ≡ Π

−→
L Π−1



Klein-Gordon equation

6.1 Introduction

The construction of quantum mechanics, which considers time as decoupled from space variables,
is not compatible with the principles of special relativity. Additionally, experimental observations
show that quantum mechanics is only accurate when the observed phenomena involve particles
at low speeds. For example, it is not a suitable model for describing experiments involving
interaction between light and matter.
In this chapter, we introduce the initial efforts to modify quantum mechanics to incorporate
relativistic principles. Our first objective will be to derive a relativistic equation. In other words,
we will begin our exploration with a particle that possesses zero spin. Within this context, it is
logical to operate within the framework of Minkowski space, which is fundamental to special
relativity, in order to develop a relativistic theory.
In order to describe quantum particles with zero spin and relativistic speeds, the Klein-Gordon
equation is introduced. This equation is the relativistic equivalent of the Schrödinger equation
given by,

Hψ = Eψ (6.1)

By applying the principle of equivalence, we can write

ih̄
∂

∂t
ψ =

−→
P 2

2m
ψ = − h̄2

2m
∇2ψ, −→p = −ih̄

−→∇ (6.2)

It is known that in the case of plane waves, the functions ψ(−→r , t) which are solutions of the
Schrödinger equation are given by.

ψ(−→r , t) = ei(
−→p ·−→r

h̄ −
E·t
h̄ ) (6.3)

Let’s attempt to find the general form of the Klein-Gordon equation, which allows us to describe
the motion of free particles with zero spin and relativistic velocities, starting from the Schrödinger

40
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equation.

6.2 Quadri-vectors in field theory.

It is important to remember that the relativistic energy of a free particle is determined by

E =
√
−→p 2c2 + m2c4 (6.4)

– −→p : impulsion

– c : velocity of light

– m : mass of the particle

The energy-momentum quadri-vector
−→
P is defined by.

−→
P =

(
−→p ,

E
c

)
(6.5)

In field theory, the Einstein convention is used. If
−→
A is a quadri-vector, it is denoted as Aµ with

µ = 1, 2, 3, 4. The quadri-vector Aµ has the following components:

Aµ =


a1

a2

a3

ia4

 (6.6)

When calculating the dot product of two quadri-vectors Aµ and Bν, the result is obtained

AµBν =


a1

a2

a3

ia4

 ·


b1

b2

b3

ib4

 = +a1b1 + a2b2 + a3b3 − a4b4 (6.7)

The scalar product satisfies the metric of Minkowski space (+,+,+,−).
In the field theory, the energy-momentum quadri-vector is written as:

Pµ =

(
−→p , i

E
c

)
(6.8)
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It should be emphasized that in quantum mechanics, E and −→p are defined as:

E→ ih̄
∂

∂t
−→p → −ih̄

−→∇ (6.9)

By substituting (6.9) into (6.8), we obtain

Pµ =

(
−ih̄
−→∇ , i

ih̄
c

∂

∂t

)
= −ih̄

(−→∇ ,− i
c

∂

∂t

)
(6.10)

If we set,

∂µ =

(−→∇ ,− i
c

∂

∂t

)
(6.11)

The quadri-vector spatio-temporal derivative is represented by ∂µ, where we find

Pµ = −ih̄∂µ (6.12)

6.3 Free Klein-Gordon equation

Let’s now find the equation of the free Klein-Gordon describing the motion (displacement) of a
quantum particle, with zero spin and relativistic speed
In quantum mechanics, a free particle is described by the Schrödinger’s evolution equation.

ih̄
∂

∂t
φ(−→r , t) = Eφ(−→r , t) où E = H = Ec + V = Ec + 0 =

1
2

mv2 avec v << c (6.13)

For a free relativistic particle

ER =
√
−→p 2c2 + m2c4 (6.14)

The dynamics of these relativistic particles will be described by the following equation

ih̄
∂

∂t
φ(−→r , t) = ER φ(−→r , t) =

√
−→p 2c2 + m2c4 φ(−→r , t) (6.15)

(
ih̄

∂

∂t

)2

φ(−→r , t) =
(√
−→p 2c2 + m2c4

)2

φ(−→r , t) (6.16)

−h̄2 ∂2

∂2t
φ(−→r , t) =

(−→p 2c2 + m2c4
)

φ(−→r , t) (6.17)
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−h̄2 ∂2

∂2t
φ(−→r , t) =

((
−ih̄
−→∇
)2

c2 + m2c4
)

φ(−→r , t) (6.18)

−h̄2 ∂2

∂2t
φ(−→r , t) =

((
−ih̄
−→∇
)2

c2 + m2c4
)

φ(−→r , t) (6.19)

−h̄2

h̄2c2

∂2

∂2t
φ(−→r , t) +

h̄2−→∇ 2c2

h̄2c2
φ(−→r , t)− m2c4

h̄2c2
φ(−→r , t) = 0 (6.20)

By setting
−→∇ 2 = ∆, we obtain the following equation(

∆− 1
c2

∂2

∂2t
− m2c2

h̄2

)
φ(−→r , t) = 0 (6.21)

The final equation represents the free Klein-Gordon equation written in real space. Let us now
seek the form of this equation in Minkowski space.
We have

∂µ =

(−→∇ ,− i
c

∂

∂t

)
=⇒ ∂2

µ = ∂µ · ∂µ =

(−→∇ ,− i
c

∂

∂t

)
·
(−→∇ ,− i

c
∂

∂t

)
(6.22)

∂2
µ =

(
∆,− 1

c2
∂2

∂2t

)
= ∆− 1

c2
∂2

∂2t
(6.23)

By replacing (6.23) in (6.21), we get(
∂2

µ −
m2c2

h̄2

)
φ(−→r , t) = 0 (6.24)

By setting h̄ = c = 1 and defining (−→r , t) = xµ, where xµ denotes a point in Minkowski space and
µ = 1, 2, 3, 4, the equation (6.24) is transformed(

∂2
µ −m2

)
φ(xµ) = 0 (6.25)

This equation represents the free Klein-Gordon equation expressed in Minkowski space.
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6.4 Invariance of the free Klein-Gordon equation under gauge

transformation

Exercice 10 :

The motion of a particle with mass m, zero spin, and relativistic speed c is governed by the
following free Klein-Gordon equation(

∂2
µ −m2

)
φ(xµ) = 0

- Demonstrate the invariance of this equation under the following gauge transformation

φ(xµ) −→ φ
′
(xµ) = e−iqα(xµ)φ(xµ) , φ(xµ), α(xµ) sont deux réels arbitraires.

6.5 Solutions to the free Klein-Gordon equation

The free for Klein-Gordon equation is given by

(
∂2

µ −m2
)

φ(xµ) = 0 qu’on peut écrire
(

∆− 1
c2

∂2

∂2t
− m2c2

h̄2

)
φ(−→r , t) = 0 (6.26)

This equation has a solution in steady states. Its general form is given by,

φ(−→r , t) = f (t) · ψ(−→r ) (6.27)

It is said that a steady-state solution is a solution with separable variables. Substituting (6.27) into
(6.26), we find (

∆− 1
c2

∂2

∂2t
− m2c2

h̄2

)
f (t) · ψ(−→r ) = 0 (6.28)

f (t)∆ψ(−→r )− ψ(−→r )
1
c2

∂2

∂2t
f (t)− m2c2

h̄2 f (t)ψ(−→r ) = 0 (6.29)
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Dividing the entire equation by f (t)ψ(−→r ) yields

f (t)∆ψ(−→r )

f (t)ψ(−→r )
− 1

f (t)ψ(−→r )
ψ(−→r )

1
c2

∂2

∂2t
f (t)− 1

f (t)ψ(−→r )

m2c2

h̄2 f (t)ψ(−→r ) = 0 (6.30)

∆ψ(−→r )

ψ(−→r )
− 1

f (t)
1
c2

∂2

∂2t
f (t)− m2c2

h̄2 = 0 (6.31)

This equation represents a second-order equation with two independent variables.

∆ψ(−→r )

ψ(−→r )
− m2c2

h̄2 =
1
c2

f
′′
(t)

f (t)
= constante, avec f

′′
=

∂2

∂2t
f (t) (6.32)

If we define constant = ω2, we can deduce

∆ψ(−→r )

ψ(−→r )
− m2c2

h̄2 =
1
c2

f
′′
(t)

f (t)
= ω2 (6.33)

From this equation, we derive the two following equations:

∆ψ(−→r )

ψ(−→r )
− m2c2

h̄2 = ω2 =⇒ ∆ψ(−→r )

ψ(−→r )
= ω2 +

m2c2

h̄2 =⇒ ∆ψ(−→r )−
(

ω2 +
m2c2

h̄2

)
ψ(−→r ) = 0 (6.34)

1
c2

f
′′
(t)

f (t)
= ω2 =⇒ f

′′
(t)

f (t)
= c2ω2 =⇒ f

′′
(t) = c2ω2 f (t) =⇒ f

′′
(t)− c2ω2 f (t) = 0 (6.35)

Equation (6.35) can be expressed in the following general form

f
′′
(t)± (cω)2 f (t) = 0 (6.36)

Equation (6.35) then has solutions of the form

f (t) = A ecωt + B e−cωt (6.37)

In order to have continuous solutions everywhere, we set

c ω =
i E
h̄

, E est un réel. (6.38)
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By substituting (6.37) into (6.38), we obtain

f (t) = A e
i E
h̄ t + B e−

i E
h̄ t (6.39)

We have

c ω =
i E
h̄

=⇒ c2 ω2 = −E2

h̄2 =⇒ ω2 = − E2

c2h̄2 (6.40)

Let us now substitute into equation (6.34)

∆ψ(−→r )−
(
− E2

c2h̄2 +
m2c2

h̄2

)
ψ(−→r ) = 0 =⇒ (6.41)

By finding a common denominator, one can determine

∆ψ(−→r )−
(
− E2

c2h̄2 +
m2c4

c2h̄2

)
ψ(−→r ) = 0 =⇒ ∆ψ(−→r )−

(
−E2 + m2c4

c2h̄2

)
ψ(−→r ) = 0 (6.42)

Or,
E2 = −→p 2c2 + m2c4 =⇒ −−→p 2c2 = −E2 + m2c4 (6.43)

By substituting into the previous equation, we find

∆ψ(−→r )−
(
−−→p 2c2

c2h̄2

)
ψ(−→r ) = 0 =⇒ ∆ψ(−→r )−

(
−−→p 2

h̄2

)
ψ(−→r ) = 0 =⇒ (6.44)

∆ψ(−→r )−
(

i−→p
h̄

)2

ψ(−→r ) = 0 (6.45)

This equation has solutions of the following form

ψ(−→r ) = C e
i−→p −→r

h̄ + D e−
i−→p −→r

h̄ (6.46)

6.6 Physical interpretation of solutions to the free Klein-Gordon

equation

In order to give a physical meaning to the solutions, we assume

– e−
i E
h̄ t Represents a particle that was created in the past (−∞) and is traveling towards the

future (+∞).
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– e
i E
h̄ t Represents a particle created in the future (+∞) and travels towards the past (−∞).

– A Represents the probability that the particle being created in the future (+∞) and traveling
towards the past (−∞).

– B Represents the probability that the particle was created in the past, extending from nega-
tive infinity (−∞), and is now moving towards the future, represented by positive infinity
(+∞).

Therefor, the physical solution is given by

f (t) = e−
i E
h̄ t (6.47)

It signifies the probability that the particle was created in the past, extending from negative
infinity, and is now moving towards the future, represented by positive infinity

φ(−→r , t) = f (t) · ψ(−→r ) = e−
i E
h̄ t
(

C e
i−→p −→r

h̄ + D e−
i−→p −→r

h̄

)
(6.48)

Exercice 11 :

The particles with spin 0, charge q, and mass m are approaching from (+∞) to (−∞) on a
potential barrier of height V and width a. Given that the energy of these particles is given by
E = qV/2, where qV > 2mc2,

1. Calculate the transmission coefficients T and reflection coefficients R.

2. Calculate the current density Jx in each region.

Indication: Working on one dimension.
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6.7 Klein-Gordon equation in the presence of an external elec-

tromagnetic field

This equation describes the interaction between a particle with charge q and the external electro-
magnetic field, which is represented by the four-vector potential Aµ =

(−→
A , i φ

c

)
.

To obtain the Klein-Gordon equation in the presence of an external electromagnetic field, the
minimal coupling method is employed, which involves substituting the momentum and energy
(−→p , E) with.

E→ E− qφ −→p → −→p − q
−→
A (6.49)

In the free Klein-Gordon equation, the transformation presented in equation (6.49) can be refor-
mulated using four-vectors. Its expression is provided by:

Pµ → Pµ − qAµ (6.50)

Exercice 12 :

– Demonstrate the equivalence of the two transformations provided in equations (6.49) and
(6.50).

We have
Pµ = −ih̄ ∂µ =⇒ Pµ = −i ∂µ pour h̄ = 1 (6.51)

The transformation (6.50) becomes,

−i ∂µ → −i ∂µ − qAµ =⇒ ∂µ → ∂µ − iqAµ =⇒ ∂µ · ∂µ →
(
∂µ − iqAµ

) (
∂µ − iqAµ

)
(6.52)

If we replace in the free Klein-Gordon equation, we get[(
∂µ − iqAµ

) (
∂µ − iqAµ

)
−m2

]
φ(xµ) = 0 (6.53)

This equation is known as the Klein-Gordon equation in the presence of an external electromag-
netic field Aµ. Introducing Dµ =

(
∂µ − iqAµ

)
, equation (6.53) can be expressed as[

DµDµ −m2
]

φ(xµ) = 0 (6.54)
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The conjugate of the latter equation is provided by[
D∗µD∗µ −m2

]
φ∗(xµ) = 0 =⇒

[(
∂µ + iqAµ

) (
∂µ + iqAµ

)
−m2

]
φ∗(xµ) = 0 (6.55)

6.8 invariance of the Klein-Gordon equation under the presence

of an external electromagnetic field through gauge transfor-

mation

Exercice 13 :

In the presence of an external electromagnetic field Aµ(
−→
A , iV), the motion of a particle with mass

m, zero spin, and relativistic speed c is characterized by the following Klein-Gordon equation[
(∂µ − iqAµ)(∂µ − iqAµ)−m2

]
φ(xµ) = 0

- Demonstrate the invariance of this equation under the following gauge transformation{
Aµ −→ A

′
µ = Aµ − ∂µα(xµ)

φ(xµ) −→ φ
′
(xµ) = e−iqα(xµ)φ(xµ) , φ(xµ), α(xµ)sont deux réels arbitraires.

6.9 Klein-Gordon equation current in the presence of an external

electromagnetic field

Exercice 14 :
The Klein-Gordon equation, which governs the dynamics of a relativistic particle with mass m,
charge q, and subject to an external electromagnetic-magnetic field Aµ(

−→
A , iφ), is presented[

(∂µ − iqAµ)(∂µ − iqAµ)−m2
]

ψ(x) = 0

Determine the quadri-vector current expression of Klein-Gordon Jµ that solves the equation

∂µ Jµ = 0
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We give : (∂∗µ − iqA∗µ)(∂∗µ − iqA∗µ) = (∂µ + iqAµ)(∂µ + iqAµ)

6.10 Exercises

Exercice 15 :

Particles with spin 0, charge q, and mass m are approaching from (−∞) towards (+∞) a potential
barrier of height V and width a.
Given that the energy of these particles is determined by E = qV/2, where qV > 2mc2,

1. Recover the general form of the wave function outside the potential barrier.

2. Calculate the current density Jx outside the potential barrier when the wave function is
provided

φ(x) = eipx

3. Demonstrate the expression for the transmission coefficient T

T =
4pp

′(
p + p′

)
eia(p−p′ ) −

(
p− p′

)
eia(p+p′ )

when the momentum p of particles outside the potential barrier is different from the mo-
mentum p

′
of particles inside the potential barrier.

We give: p =
√

E2 −m2 et p
′
=
√
(E− qV)2 −m2 avec c = h̄ = 1. Indication: Work in one

dimension

Exercice 16 :

1. Reconstruct the general form of the free Klein-Gordon equation from the Schrödinger equa-
tion.

2. Derive the general form of the Klein-Gordon equation in the presence of an external electro-
magnetic field by employing the method of minimal coupling.

3. Find the solutions of the free Klein-Gordon equation.

Exercice 17 :
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The Klein-Gordon equation (Adjoint), in the presence of an external electromagnetic-magnetic

field Aµ(
−→
A , iφ

c ), is provided by[
(∂µ + iqAµ)(∂µ + iqAµ)−m2

]
φ∗(xµ) = 0

1. Demonstrate the invariance of this equation under the following gauge transformation:{
Aµ −→ A

′
µ = Aµ + ∂µα(xµ)

φ∗(x) −→ φ∗(x)
′
= e−iqα(xµ)φ∗(x) , α(xµ) est un réel arbitraire

Exercice 18 :

1. Obtain the quadri-current density vector expression from the continuity equation.

2. Derive the expression for the quadri-current potential from the Lorentz gauge equation.



Dirac equation

7.1 Introduction

We will now attempt to develop a relativistic theory for particles with non-zero spin. Initially, we
will consider a scenario in which the electromagnetic field is not taken into account.
To achieve a satisfactory model, it is necessary for the state vector ψ to be governed by an equation
that generalizes both the Schrödinger equation (which does not account for relativistic phenom-
ena) and the Klein-Gordon equation (which does not consider spin). This equation must possess
two primary properties.

1. It must remain invariant under the action of the Lorentz group.

2. It must be of the first order in t and, more specifically, take the following form.

ih̄∂tψ = HDψ (7.1)

where HD represents an operator. The proof follows the same methodology as that em-
ployed to derive the Klein-Gordon equation.

7.2 The shortcomings of the Klein-Gordon equation

The Klein-Gordon equation is deemed unsatisfactory due to the presence of solutions with nega-
tive energy. This issue ultimately led Dirac to propose the existence of the "positron," a particle
analogous to the electron but possessing a positive charge.
Before examining the physical consequences of negative energies, it is essential to first establish
the underlying theory. Let us proceed with the standard approach when analyzing a second-
order ordinary differential equation that we wish to reduce to first order (in terms of t only).
Let us define the following vector

φ =

(
ψ

∂tψ

)
.

52
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We are led to the following first-order equation:

∂tφ =

(
0 Id

∆ + m2

h̄2 0

)
φ.

In fact, it will be more convenient to place.

φ1 = ψ +
ih̄
m

∂tψ et φ2 = ψ− ih̄
m

∂tψ (7.2)

It is important to note that the wave function defined by Φ = (φ1, φ2) satisfies the following
equation

∂tΦ =
1
2

(
ih̄
m ∆ ih̄

m ∆ + 2im
h̄

− ih̄
m ∆− 2im

h̄ − ih̄
m ∆

)
Φ. (7.3)

If the velocity of the particle is small compared to the speed of light, we can disregard its ki-
netic energy in relation to its internal energy, leading to the conclusion that the total energy is
approximately equal to E ' mc2 = m2. This relationship is expressed in terms of observables
as ih̄∂tψ = mψ, which implies that in non-relativistic scenarios, φ2 ' 0. By setting φ2 = 0 and
examining the first coordinate in (7.3), we derive the equation

∂tφ1 =
ih̄
2m

∆φ1

. In other words, we arrive at the non-relativistic Schrödinger equation.

7.3 Dirac’s Hamiltonian

To prevent the use of particles with negative energies, as was the case with the Hamiltonian (the
total energy) from which the Klein-Gordon equation for a free particle was derived, Paul Dirac
suggested in 1928 that the general form of the Hamiltonian be expressed as follows:

HDirac =
−→α .−→p c + β mc2 =

3

∑
i=1

αi.pic + β mc2 = αi.pic + β mc2 (7.4)

where the coefficients β and αi are constants that do not commute.
- We are seeking the values of these two constants.



54

By calculating the square of the Dirac Hamiltonian H2
Dirac, one arrives at the following expression

H2 =
(

αi.pic + β mc2
) (

αj.pjc + β mc2
)
= −→p 2c2 + m2c4 (7.5)

H2 = pi pjαiαjc2 + β2mc2c4 + mc3pi
(

βαj + αjβ
)
= −→p 2c2 + m2c4 (7.6)

- It is observed through comparison that

β2 = 1 =⇒ ββ−1 = 1 =⇒ β = β−1 (7.7)

βαj + αjβ = 0 (7.8)

pi pjαiαj = p2 (7.9)

for i = j = 1, 2, 3 we can get:

pi pjαiαj = p2
1α2

1 + p2
2α2

2 + p1p2 (α1α2 + α2α1) + p1p3 (α1α3 + α3α1) + p2p3 (α2α3 + α3α2) (7.10)

pi pjαiαj = p2
1 + p2

2 + p2
3 (7.11)

For (7.10) to be equal to (7.11), it is necessary that

α2
1 = α2

2 = α2
3 = 1 (7.12)

α1α2 + α2α1 = α1α3 + α3α1 = α2α3 + α3α2 = 0 (7.13)

Therefor, if we suppose that α2
i = 1 où i = 1, 2, 3 then

{αi, αj} = 2δij (7.14)
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In this context, {A, B} = AB + BA represents the anti-commutator of the two quantities A and B.
Finally, the dimensionless constants αi and β satisfy the following anti-commutation relations

β2 = 1 (7.15)

{β, αi} = 0 (7.16)

{αi, αj} = 2δij (7.17)

α2
i = 1 (7.18)

(7.19)

Therefor,

α2
1 = α2

2 = α2
3 = β2 = 1, (7.20)

{α1, α2} = {α1, α3} = {α2, α3} = {β, α1} = {β, α2} = {β, α3} = 0, (7.21)

7.4 The characteristics of Dirac matrices

Prior to formulating the Dirac equation that describes particles with non-zero spin, it is essential
to ascertain the order of the matrices present in the expression of the Dirac Hamiltonian. Es-
tablishing the order of the matrices β and αi will facilitate the determination of the number of
components in the spinor that characterizes the state of such a particle in the relativistic context.
To achieve this:

1. The eigenvalues of matrices are determined. β , αi : i = 1, 2, 3.
The eigenvalue equation, pertaining to β (and similarly to the αi), is expressed in the follow-
ing form.

β
−→
X = λ

−→
X .

A second application of β (or the αi) yields, taking into account (??):

β2−→X = λ β
−→
X ⇒ 1.

−→
X = λ2−→X

λ2 = 1 ⇒ λ = ±1.

Therefore, the eigenvalues of the matrices β and αi are either +1 or −1.

2. It is subsequently demonstrated that the traces Tr(β) = Tr(αi) = 0. To achieve this, we will
utilize, on one hand, the anti-commutation of the matrices in question, and on the other
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hand, the well-known properties.

Tr(A B) = Tr(B A),

Tr(λ A) = λ Tr(A). (7.22)

Indeed,

Tr(αi) = Tr(1.αi) = Tr(β2 αi) = Tr
[
β(β αi)

]
= Tr

[
β(−αi β)

]
= −Tr

[
β(αi β)

]
= −Tr

[
(αi β)β

]
= −Tr

[
αi β2]

= −Tr(αi)

⇒ Tr(αi) = 0. (7.23)

A similar demonstration can be conducted to illustrate that Tr(β) = 0.

3. We will utilize the property that Hermitian matrices M are diagonalizable, meaning there
exists an invertible matrix S such that.

S M S−1 = MD =



λ1 ... 0 ... 0
... . . . ... . . . ...
0 ... λi ... 0
... . . . ... . . . ...
0 ... 0 ... λn


, (7.24)

where the λi represent the eigenvalues of M. Additionally, the equality of the traces of the
two matrices M and MD is also utilized. Indeed,

Tr(M) = Tr
[
S−1(MDS)

]
= Tr

[
(MDS)S−1] = Tr(MD) (7.25)

Since the matrices β and αi are Hermitian, it is possible to apply the aforementioned prop-
erties, which can be expressed in the context of β and αi as follows

Tr(β) = Tr(αi) = 0 ⇒ Tr(βD) = Tr
[
(αi)D

]
= 0

⇒
n

∑
i=1

λi = 0

⇒ (1 + 1− 1 + ..− 1 + 1)︸ ︷︷ ︸
n termes

= 0.
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In order to achieve a sum of zero, it is necessary for the +1 and -1 values to completely offset
each other. This condition is met only when the dimensions of the matrices βD, (αi)D, or
alternatively, β and αi, are even, specifically when n = 2p.
For n = 2, A basis for the complex matrices M2×2 consists of the set of Pauli matrices, along
with the identity matrix {σ1, σ2, σ3, 1}. In this scenario, there is no solution, as equating the
αi with the σi necessitates that β = 1. However, β has a trace that differs from 1 (Tr(1) = 2),
which is contradictory.
for n = 4, Solutions do exist. They can be expressed in standard representation in the
following form.

−→α =

(
0 −→σ
−→σ 0

)
, β =

(
1 0
0 −1

)
, (7.26)

where 1 represents the identity matrix of size (2× 2) and −→σ = −→e1 σ1 +
−→e2 σ2 +

−→e3 σ3. The
three Pauli matrices are defined as follows

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7.27)

In conclusion, it can be stated that the matrices β and αi present in the Dirac Hamiltonian
are of order 4× 4. Consequently, the wave function that characterizes the state of a particle
with non-zero spin is a four-component spinor. This spinor is capable of describing both
the particle and its non-zero spin antiparticle. In standard representation, it is customary to
employ the following condensed notation.

ψ =

(
ϕ

χ

)
, (7.28)

In this context, ϕ and χ represent two-component spinors, which correspond to the particle
and its antiparticle, respectively.
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7.5 Standard representation

The representation of Dirac matrices in the standard form is provided by

γk =

(
O −iσk

iσk O

)
(7.29)

γ4 =

(
I O

O −I

)
(7.30)

where σk represents the Pauli matrices (which are 2× 2 matrices), defined as follows.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(7.31)

and

I =

(
1 0
0 1

)
−→ matrice unitaire, O =

(
0 0
0 0

)
(7.32)

Exercice 19 :

1. Provide the explicit forms of the following Dirac matrices: γ1, γ2, γ3, and γ4.

2. Demonstrate that

(γµ)+ = γµ, (γµ)1 = 1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , {γµ, γν} = 2δµν (7.33)

Solution 20:
1o/ The four Dirac matrices are provided by,

γ1 =

(
O −iσ1

iσ1 O

)
=


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 (7.34)
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γ2 =

(
O −iσ2

iσ2 O

)
=


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (7.35)

γ3 =

(
O −iσ3

iσ3 O

)
=


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 (7.36)

γ4 =

(
I O

O −I

)
=


1 0 0 0
0 1 0 1
0 0 −1 0
0 0 0 −1

 (7.37)

2o/a/ Demonstrate that:

(γµ)+ = γµ, où si A = aij alors A+ = a∗ji (7.38)

- For µ = 1

(
γ1
)+

=




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0



+

=


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 = γ1 (7.39)

- For µ = 2

(
γ2
)+

=




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



+

=


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 = γ2 (7.40)

- For µ = 3

(
γ3
)+

=




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0



+

=


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 = γ3 (7.41)
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- For µ = 4

(
γ4
)+

=




1 0 0 0
0 1 0 1
0 0 −1 0
0 0 0 −1



+

=


1 0 0 0
0 1 0 1
0 0 −1 0
0 0 0 −1

 = γ4 (7.42)

Therefor, (γµ)+ = γµ.
2o/b/ Demonstrate that:

(γµ)2 = 1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (7.43)

- For µ = 1

(
γ1
)2

=


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 1 (7.44)

- For µ = 2

(
γ2
)2

=


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 1 (7.45)

- For µ = 3

(
γ3
)2

=


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 1 (7.46)
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- For µ = 4

(
γ4
)2

=


1 0 0 0
0 1 0 1
0 0 −1 0
0 0 0 −1




1 0 0 0
0 1 0 1
0 0 −1 0
0 0 0 −1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 1 (7.47)

Therefor (γµ)2 = 1.
2o/c/ Demonstrate that:

{γµ, γν} = 2δµν (7.48)

- Pour µ = ν = 1

{γ1, γ1} = γ1γ1 + γ1γ1 = 2
(

γ1
)2

= 2δ11 = 2 (7.49)

- Pour µ = 1, ν = 2
{γ1, γ2} = γ1γ2 + γ2γ1 = 2δ12 = 0 (7.50)

Verification:

γ1γ2 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 (7.51)

γ2γ1 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 =


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 (7.52)

Therefor,

{γ1, γ2} = γ1γ2 + γ2γ1 =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

+


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (7.53)

Therefor,
{γµ, γν} = 2 lorsque µ = ν, {γµ, γν} = 0 lorsque µ 6= ν (7.54)



62

7.6 Free Dirac equation

In the following discussion, we will attempt to derive the Dirac equation from the Schrödinger
evolution equation,

ih̄
∂ψ

∂t
= HShrdingerψ, avec HShrodinger = −

h̄2

2m
−→∇ 2 (7.55)

The Dirac’s Hamiltonian is given by,

HDirac = αi.pic + β mc2 (7.56)

and
−→p = −ih̄

−→∇ = −ih̄
−→
∂ = −i h̄ ∂i (7.57)

We have also,

∂4 =
−i
c

∂

∂t
=⇒ i

∂

∂t
= −c ∂4 (7.58)

By substituting into (7.55), one obtains.

ih̄
∂ψ

∂t
=
(

αi.pic + β mc2
)

ψ =⇒ −c h̄ ∂4ψ =
(
−i h̄ αi ∂i c + β mc2

)
ψ (7.59)

If we divide both sides of the equation (7.59) by c, we obtain

−h̄ ∂4ψ = (−i h̄ αi ∂i + β m c)ψ (7.60)

At this point, if we divide both sides of the equation (7.60) by β, we obtain

−β h̄ ∂4ψ = (−i β h̄ αi ∂i + m c)ψavec β = β−1 (7.61)

(
∂4 β + ∂i (−i β αi) +

m c
h̄

)
ψ = 0 (7.62)

(
∂4 γ4 + ∂i γi +

m c
h̄

)
ψ = 0 (7.63)
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with

γ4 = β (7.64)

γi = −i β αi (7.65)

Finally, we found, (
∂4 γ4 + ∂i γi + m

)
ψ = 0 avec h̄ = c = 1 (7.66)

By employing the representation of the two quadri-vectors.

∂µ = (∂i, ∂4) (7.67)

γµ =
(

γi, γ4
)

(7.68)

where,
(∂i, ∂4) ·

(
γi, γ4

)
= ∂4 γ4 + ∂i γi (7.69)

This equation can be rewritten as follow,

(
∂µ γµ + m

)
ψ = 0 (7.70)

The last equation represents the Dirac equation for a free particle.
If we make the following assumption,

6∂ = ∂µ γµ (7.71)

We get,

( 6∂ + m )ψ(x) = 0 avec ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 −→ spineur de dirac (7.72)

Therefore, the Dirac matrices exhibit the following properties for subscripts µ, ν = 1, 2, 3, 4

(γµ)+ = γµ (7.73)

(γµ)2 = 1 (7.74)

{γµ, γν} = 2δµν (7.75)
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7.7 Physical interpretation of the negatives energies

The advantage of utilizing component vectors (spinors) lies in their ability to represent fermions
(such as electrons). Specifically, two components of the Dirac spinor are employed to character-
ize the two spin states (±1

2 ) of the particle, which possesses an energy of (
√

p2c2 + m2c4). The
remaining two components of the spinor are used to describe the spin state of the antiparticle,
which has an energy of (−

√
p2c2 + m2c4).

The antiparticle simply represents the absence of matter (a void).
For instance, when a particle transitions from a lower energy level to a higher energy level,
the vacancy created by the particle, known as a hole, is regarded as the antiparticle of energy
(E = −

√
p2c2 + m2c4), commonly referred to as a positron. A positron has the same mass as an

electron but carries a positive charge (+q).

Figure 7.1: Diagram of the Dirac Sea.

When an electron returns to its initial state, it emits a photon of energy (hν)

e− + e+ −→ γ (7.76)

This process is referred to as the annihilation phenomenon. It can be observed in particle accel-
erators, where electrons and positrons are accelerated to speeds approaching that of light, subse-
quently colliding to produce new particles (such as pions, mesons, etc.) that possess extremely
short lifetimes.
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7.8 Current of free Dirac equation

We seek the expression of the current associated with the Dirac equation, which satisfies the given
continuity equation.

∂ρ

∂t
+
−→∇ · −→j = 0 =⇒ ∂µ Jµ = 0 avec µ = 1, 2, 3, 4 (7.77)

The free Dirac equation is given by,

( 6∂ + m )ψ(x) = 0 =⇒
(
∂µ γµ + m

)
ψ(x) = 0 (7.78)

- By calculating the conjugate of the Dirac equation, we arrive at the following result

[(
∂µ γµ + m

)
ψ(x)

]∗
= 0 =⇒ ψ+(x)

(
∂∗µ (γµ)+ + m

)
= 0 (7.79)

We have
∂µ = (∂i, ∂4) =⇒ ∂∗µ = (∂∗i , ∂∗4) (7.80)

with
∂∗i = ∂i, ∂∗4 = −∂4 (7.81)

Therefor,
∂∗µ = (∂i,−∂4) (7.82)

and
γµ =

(
γi, γ4

)
=⇒ (γµ)+ = γµ =

(
γi, γ4

)
(7.83)

Therefor,
∂∗µ (γµ)+ = ∂i γi − ∂4 γ4 (7.84)

Substituting (7.84) in (7.79) we get,

ψ+(x)
(

∂i γi − ∂4 γ4 + m
)
= 0 (7.85)

By multiplying both sides of the equation (7.85) by (γ4), one arrives at the following result.[
ψ+(x)

(
∂∗µ (γµ)+ + m

)
= 0

]
× γ4 (7.86)
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ψ+(x)
(

∂i γiγ4 − ∂4 γ4γ4 + m γ4
)
= 0 (7.87)

Or
{γµ, γν} = 2 δµν =⇒ {γ1, γ4} = γ1γ4 + γ4γ1 = 0 =⇒ γ1γ4 = −γ4γ1 (7.88)

Therefor,
ψ+
(
−γ4 ∂i γi − γ4 ∂4 γ4 + γ4 m

)
= 0 =⇒ (7.89)

ψ+ γ4
(
−∂i γi − ∂4 γ4 + m

)
= 0 =⇒ ψ+ γ4 (−∂µ γµ + m

)
= 0 (7.90)

If we define ψ = ψ+ γ4, the adjoint equation of the free Dirac equation is transformed

ψ
(
−∂µ γµ + m

)
= 0 =⇒ ψ

(
∂µ γµ −m

)
= 0 (7.91)

It can be expressed in the following final form,

ψ
(←−
6∂ −m

)
= 0 (7.92)

By multiplying equation (7.78) by ψ and equation (7.92) by ψ, we obtain the following results

ψ
(
∂µ γµ + m

)
ψ = 0 (7.93)

ψ
(
∂µ γµ −m

)
ψ = 0 (7.94)

By calculating the sum of the two equations (7.93) and (7.94), one finds that

ψ
(
∂µ γµ + m

)
ψ + ψ

(
∂µ γµ −m

)
ψ = 0 =⇒ (7.95)

ψ
←−
∂µ γµψ + mψ ψ + ψ

−→
∂µ γµψ−mψψ = 0 =⇒ (7.96)

∂µ

(
ψ γµ ψ

)
= 0 =⇒ ∂µ JDirac

µ = 0 (7.97)

with
JDirac = k ψ γµ ψ = i ψ γµ ψ avec k = i (7.98)
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7.8.1 vector current and total charge

Let us compute the expressions for the components of the momentum vector of j4 and ji

J4 = i ψ γ4 ψ = i ψ+ γ4 γ4 ψ = i ψ+ ψ = ρ (7.99)

Ji = i ψ γi ψ = i ψ+ γ4 γi ψ (7.100)

Or
γi = −i β αi, β = γ4 =⇒ γi = −i γ4 αi =⇒ (7.101)

γ4 γi = −i γ4 γ4 αi =⇒ αi = i γ4 γi (7.102)

Therefor,
Ji = ψ+ αi ψ =⇒ −→J = ψ+−→α ψ (7.103)

Finally, the total charge is given by,

Q =
∫

d3x ρ = i
∫

d3x ψ+ ψ (7.104)

7.9 Dirac equation in the presence of an external electromagnetic

field

To recover the Dirac equation in the presence of an external electromagnetic field Aµ, the method
of minimal coupling is employed

∂µ → ∂µ − iqAµ (7.105)

( 6∂ + m )ψ(x) = 0 =⇒
(
∂µ γµ + m

)
ψ(x) = 0 (7.106)

Substituting (7.105) in (7.106) we get,

((
∂µ − iqAµ

)
γµ + m

)
ψ(x) = 0 =⇒

(
∂µ γµ − iqAµ γµ + m

)
ψ(x) = 0 (7.107)

( 6∂− iq 6A + m )ψ(x) = 0 (7.108)
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This is the Dirac equation in the presence of an external electromagnetic field Aµ.

7.10 Lagrangian of the complex spinor field

It is possible to derive the Dirac equation and the adjoint Dirac equation by employing the La-
grangian formulation. Our selection of the Lagrangian is as follows

L(ψ, ∂µψ, ψ, ∂µψ, xµ) = −ψ ( 6∂ + m )ψ (7.109)

Verification: Let us verify that this Lagrangian density enables us to obtain the equations of
motion for the free complex spinor field (ψ, ψ). To conduct this verification, it is necessary to
substitute the expression of the Lagrangian density into the Euler-Lagrange equations for a field,

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 avec φi = ψ = ψ (7.110)

Therefore, each value of φi corresponds to a motion equation

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 −→ This equation allows for the derivation of the adjoint Dirac equation.

(7.111)

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 −→ This equation allows for the derivation of the Dirac equation,

(7.112)
1- Let us revisit the Dirac adjoint equation

∂L
∂ψ

= −∂µγµ −m ψ,
∂L

∂(∂µψ)
= 0 (7.113)

So,
∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 =⇒ −

(
∂µ γµ + m

)
ψ = 0 =⇒ ( 6∂ + m )ψ = 0 (7.114)

2- Let us revisit the Dirac equation

∂L
∂ψ

= −m ψ,
∂L

∂(∂µψ)
= −ψγµ (7.115)
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Therefor

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 =⇒ −m ψ + ψγµ =⇒ ψ

(←−
∂µ γµ −m

)
= 0 =⇒ ψ

(←−
6∂ + m

)
= 0 (7.116)

Therefore, the Lagrangian density of the free complex spinor field is expressed as

L = −ψ ( 6∂ + m )ψ = −ψ
(
∂µ γµ + m

)
ψ = −ψ

−→
∂µ γµψ−mψψ (7.117)

7.11 Lagrangian of the complex spinor field in the presence of

an external electromagnetic field.

To derive the two equations of motion for the spinor fields ψ and ψ in the presence of an external
electromagnetic field Aµ, the following Lagrangian density is employed

L = −ψ ( 6∂− iq 6A + m )ψ = −ψ
(
∂µ γµ − iq Aµγµ + m

)
ψ (7.118)

That we can write in the following form,

L = −ψ
−→
∂µ γµψ− iq Aµ γµ ψψ + mψψ (7.119)

It is important to recall that the Dirac equations and the adjoint Dirac equation in the presence of
an external electromagnetic field are expressed as follows,

( 6∂− iq 6A + m )ψ(x) = 0 (7.120)

ψ
(←−
6∂ + iq 6A + m

)
ψ(x) = 0 (7.121)

Verification: Let us verify that this Lagrangian density enables us to derive the equations of
motion for the complex spinor field in the presence of an electromagnetic field. To conduct this
verification, it is necessary to substitute the expression of the Lagrangian density into the Euler-
Lagrange equations for a field,

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 avec φi = ψ = ψ (7.122)
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Therefore, each value of φi corresponds to a motion equation

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 (7.123)

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 (7.124)

1- Let us revisit the adjoint equation

∂L
∂ψ

= − ( 6∂− iq 6A + m )ψ,
∂L

∂(∂µψ)
= 0 (7.125)

So

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 =⇒ − ( 6∂− iq 6A + m )ψ = 0 =⇒ ( 6∂− iq 6A + m )ψ = 0 (7.126)

2- Let us revisit the Dirac equation

∂L
∂ψ

= iq Aµ γµ ψ−m ψ,
∂L

∂(∂µψ)
= −ψγµ (7.127)

alors

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0 =⇒ iq Aµ γµ ψ−m ψ + ψγµ = 0 =⇒ ψ

(←−
6∂ + iq Aµ γµ −m

)
= 0 (7.128)

7.12 Exercises

Exercice 20 :

1o/ In the presence of an external electromagnetic field Aµ, the dynamics of a relativistic particle
with charge q, mass m, and non-zero spin can be described by the following Lagrangian density
of the spinor field.

L2 = −ψ̄( 6∂− iq 6A + m)ψ = −ψ†γ4(∂µγµ − iqAµγµ + m)ψ

1. Derive the equations of motion by utilizing the Euler-Lagrange equations.
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2o/ In the absence of the electromagnetic field, the dynamics of a free particle can be described
by

L3 = −ψ̄ 6∂ψ = −ψ†γ4∂µγµψ

1. Demonstrate that this Lagrangian density remains invariant under the following phase trans-
formation: {

ψ(x) −→ ψ
′
(x) = e−iθγ5

ψ(x)
ψ̄(x) −→ ψ̄

′
(x) = ψ̄(x)e−iθγ5

, θ is a constant.

where γ5 = γ1γ2γ3γ4 and verify the following relations: {γ5, γµ} = 0,
(
γ5)†

= γ5 et
(γ5)2 = 1.

2. Employ the Noether Theorem to identify the conserved quantities associated with this trans-
formation.

3o/ If we set:  ψL(x) =
(

1+γ5

2

)
ψ(x)

ψR(x) =
(

1−γ5

2

)
ψ(x)

1. Rewrite the expression for the Lagrangian density L3 in terms of ψL and ψR.

2. Examine the invariance of the Lagrangian density L3 under the following phase transforma-
tion. {

ψL(x) −→ ψ
′
L(x) = ψL(x)e−iα

ψR(x) −→ ψ
′
R(x) = ψR(x) , α is a constant.
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