

People's Democratic Republic of Algeria

Djilali Bounaama University - Ain Defla

Faculty of Sciences

Computer Science department

End of studies thesis For obtaining the Master's

Degree in Computer Science
Option : '' SOFTWARE ENGINEERING ''

Theme :
 Etude comparative des approches deep learning ''

convolutional neural network '' utilisées dans

l’optimisation des algorithmes FSM

 AUTHORS:

 ABADA YOUNES

 OURAG OKBA

 Under the supervision of the teacher :

 Prof O.HARBOUCHE (superviseur)

october-2020

Abstract

Artificial intelligence still the topic of the present, that study a

lot of life domains, till reach to the graphs ” FREQUENT SUB-

GRAPH MINING “that use the approach of deep learning espe-

cialy the graph convolutional network that deal with the graphs by

a smart way, and apply some of its methods for reach to the more

effecient result by a comparison.

�
	

jÊÖÏ @

�PYK
 ø

	
YË@ ,Qå

	
�AmÌ'@ ¨ñ

	
�ñÓ ñë ú

«A

	
J¢�B@ ZA¿

	
YË@ È@ 	QK
 B

	áK
Yª
�
K \

�
éJ

	
K AJ
J. Ë @ Ðñ�QË@ úÍ@

Èñ�ñË@ ú

�
æk ,

�
èAJ
m

Ì'@
�

HBAm.
× 	áÓ Q�

�
JºË@

�
é�A

	
gð

�
�J
ÒªË@ ÕÎª

�
JË @ i. î

	
E ÐY

	
j

�
J�

�
� ú

�
æË @ " PQº

�
JÓ SUBGRAPH

�
é
�
®K
Q¢�.

�
éJ

	
K AJ
J. Ë @ Ðñ�QË@ ©Ó ÉÓAª

�
J
�
K ú

�
æË @

�
éJ

	
®J

	
¯C

�
JË @ ú

	
G AJ
J. Ë @ Õæ�QË @

�
éºJ.

�
�

Q�
�»

B@

�
éj. J

�
�
	
JË @ úÍ@

Èñ�ñÊË AîD

.
J
Ë A�

@

	
�ªK.

�
�J
J.¢

�
� Õç

�
'

�
IJ
k ,

�
éJ
»

	
X

.
�
é
	
KPA

�
®ÖÏ @ ÈC

	
g 	áÓ

�
éJ
ËAª

	
¯

Résumé

L’intelligence artificielle est toujours le sujet du présent, qui

étudie beaucoup de domaines de la vie, jusqu’à atteindre les graphiques

“ FREQUENT SUBGRAPH MINING ” qui utilisent l’approche

de l’apprentissage en profondeur en particulier le réseau convolu-

tif de graphes qui traitent les graphiques de manière intelligente,

et applique certaines de ses méthodes pour atteindre le résultat le

plus efficace par une comparaison.

Acknowledgements

THERE ARE NO WORDS TO EXPRESS

OUR GRATITUDE TO PROF. O.HARBOUCHE,
OUR ADVISER WHO HELPED US TO IMPROVE NEARLY

EVERY ASPECT OF THIS CURRENT WORK, THE STUDY

PRESENTED IN THIS THESIS WOULD NOT HAVE

HAPPENED WITHOUT HIS SUPPORT, GUIDANCE, AND

ENCOURAGEMENT.

WE WOULD ALSO LIKE TO THANK OUR FAMILIES,
THEY WERE ALWAYS SUPPORTING AND

ENCOURAGING US WITH THEIR BEST WISHES.

Page I

Contents

Acknowledgements I

List of Figures VI

List of Tables VIII

General Introduction VIII

I Graph Theory and Frequent Subgraph Mining 1
I.1 data mining . 2
I.2 Graph mining . 3
I.3 What can we do with graph mining? . 3
I.4 What is involved in graph mining? . 4
I.5 Frequent subgraph mining (FSM) . 4

I.5.1 Prerequisite . 4
I.6 Types and propertiefs of graphs . 5

I.6.1 Finite Graphs . 5
I.6.2 Infinite Graph . 5
I.6.3 Trivial Graph . 6
I.6.4 Simple Graph . 6
I.6.5 Multi Graph . 6
I.6.6 Null Graph . 7
I.6.7 Complete Graph . 7
I.6.8 Pseudo Graph . 7
I.6.9 Regular Graph . 8
I.6.10 Bipartite Graph . 8
I.6.11 Labelled Graph . 9
I.6.12 Digraph Graph . 9
I.6.13 Subgraph . 10
I.6.14 Types of Subgraph . 10
I.6.15 Connected or Disconnected Graph . 11
I.6.16 Cyclic Graph . 11
I.6.17 Isomorphisme graph . 11
I.6.18 Automorphism . 12
I.6.19 Latice . 12
I.6.20 Density . 13
I.6.21 Trees . 13

I.7 Tree Terminology . 14
I.8 Overview of FSM . 15

I.8.1 Graph isomorphism detection . 16
I.8.2 Search strategy . 17
I.8.3 FSM algorithmic approaches . 17

Page II

CONTENTS

I.8.3.1 Apriori Property . 18
I.8.3.2 Apriori based approach . 18
I.8.3.3 algorithme AprioriGraph . 18
I.8.3.4 Pattern Growth Approach . 19
I.8.3.5 algorithme PatternGrowthGraph . 19

I.8.4 Comparison between . 20
I.9 Other Applications . 21
I.10 Conclusion . 22

II General Concept for Deep Learning 23
II.1 Introduction . 24
II.2 Artificial Intelligence . 24

II.2.1 What is Artificial Intelligence? . 24
II.2.2 Philosophy of AI . 24
II.2.3 Goals of AI . 24
II.2.4 What Contributes to AI? . 24
II.2.5 Programming Without and With AI . 24
II.2.6 What is AI Technique? . 24
II.2.7 Applications of AI . 25
II.2.8 History of AI . 27
II.2.9 What is Intelligence? . 28
II.2.10 Types of Intelligence . 28
II.2.11 What is Intelligence Composed of? . 29
II.2.12 Difference between Human and Machine Intelligence 30
II.2.13 Real Life Applications of Research Areas . 31
II.2.14 Task Classificationof AI . 32

II.3 Machine learning . 34
II.3.1 Statistical Techniques . 34

II.4 Machine Learning – Categories of Machine Learning 35
II.4.1 Supervised Learning . 35

II.4.1.1 Regression . 36
II.4.1.2 Classification . 36

II.4.2 Unsupervised Learning . 36
II.4.3 Reinforcement Learning . 37
II.4.4 Deep Learning . 38
II.4.5 Deep Reinforcement Learning . 38

II.5 Machine Learning – Supervised Learning . 38
II.5.1 Algorithms for Supervised Learning . 38
II.5.2 k-Nearest Neighbours . 38
II.5.3 Decision Trees . 39
II.5.4 Naive Bayes . 39
II.5.5 Logistic Regression . 40
II.5.6 Machine Learning – Scikit-learn Algorithm . 40

II.6 Machine Learning – Unsupervised Learning . 41
II.6.1 Algorithms for Unsupervised Learning . 41
II.6.2 k-means clustering . 41
II.6.3 Cluster Identification . 41
II.6.4 Machine Learning – Artificial Neural Networks 41
II.6.5 ANN Architectures . 43

II.7 Machine Learning – Deep Learning . 44
II.7.1 Applications . 44
II.7.2 Untapped Opportunities of Deep Learning . 44

Page III

CONTENTS

II.7.3 What is Required for Achieving More Using Deep Learning? 44
II.7.4 Deep Learning -Disadvantages . 44
II.7.5 Black Box approach . 45
II.7.6 Duration of Development . 45
II.7.7 Amount of Data . 46
II.7.8 Computationally Expensive . 46
II.7.9 Mathematical Notation . 46
II.7.10 Probability Theory . 46
II.7.11 Visualization . 46

II.8 Machine Learning – Implementing Machine Learning 46
II.8.1 Language Choice . 47
II.8.2 IDEs . 47
II.8.3 Platforms . 47

II.9 Conclusion . 48

III Deep Learning on Graphs 49
III.1 INTRODUCTION . 50
III.2 NOTATIONS AND PRELIMINARIES . 51
III.3 GRAPH RECURRENT NEURAL NETWORKS . 51

III.3.1 Node-level RNNs . 51
III.3.2 Graph-level RNNs . 52

III.4 GRAPH CONVOLUTIONAL NETWORKS . 53
III.4.1 Convolution Operations . 53

III.4.1.1 Spectral Methods . 53
III.4.1.2 The Efficiency Aspect . 53
III.4.1.3 The Aspect of Multiple Graphs . 53
III.4.1.4 Frameworks . 54

III.4.2 Readout Operations . 54
III.4.2.1 Statistics . 55
III.4.2.2 Hierarchical Clustering . 55
III.4.2.3 Imposing Orders and Others . 55
III.4.2.4 Summary . 55

III.4.3 Improvements and Discussions . 55
III.4.3.1 Attention Mechanism . 55
III.4.3.2 Residual and Jumping Connections 55
III.4.3.3 Edge Features . 56
III.4.3.4 Sampling Methods . 56
III.4.3.5 Inductive Setting . 57

III.5 GRAPH AUTOENCODERS . 58
III.5.1 Autoencoders . 58
III.5.2 Variational Autoencoders . 58
III.5.3 Improvements and Discussions . 58

III.5.3.1 Adversarial Training . 58
III.5.3.2 Inductive Learning . 58
III.5.3.3 Similarity Measures . 59

III.6 GRAPH REINFORCEMENT LEARNING . 59
III.7 GRAPH ADVERSARIAL METHODS . 59

III.7.1 Adversarial Training . 60
III.7.2 Adversarial Attacks . 60

III.8 DISCUSSIONS AND CONCLUSION . 60
III.8.1 Applications . 60
III.8.2 Implementations . 60

Page IV

CONTENTS

III.8.3 Future Directions . 61
III.9 Conclusion . 61

IV Implementation and Evaluation 62
IV.1 INTRODUCTION . 63
IV.2 Implementation framework . 63

IV.2.1 Python . 63
IV.2.1.1 What is Python? . 63
IV.2.1.2 It is used for . 63
IV.2.1.3 What can Python do . 63
IV.2.1.4 Why Python ? . 63
IV.2.1.5 Good to know . 64
IV.2.1.6 Python Syntax compared to other programming languages 64

IV.2.2 DATASETS . 64
IV.2.2.1 CoRA Dataset . 64
IV.2.2.2 citeseer dataset . 64

IV.2.3 GOOGLE COLAB . 64
IV.2.3.1 Colab definition . 64
IV.2.3.2 How does colab work? . 65
IV.2.3.3 What colab services are available? 65

IV.3 IMPLEMENTATION . 65
IV.3.1 Semi-Supervised Classification with GCNs ”Li et al” method 65

IV.3.1.1 dataset used . 66
IV.3.1.2 Results Analysis . 66
IV.3.1.3 Comparison with other methods . 67

IV.3.2 Graph convolutional network: kipth and willing method 68
IV.3.2.1 SEMI-SUPERVISED NODE CLASSIFICATION 68
IV.3.2.2 GRAPH-BASED SEMI-SUPERVISED LEARNING 69
IV.3.2.3 EXPERIMENTS . 69
IV.3.2.4 DATASETS . 69
IV.3.2.5 RESULTS . 69
IV.3.2.6 Results Analysis . 69

IV.3.3 graph convolutional network : ” LGCN method ” 70
IV.3.3.1 introduction . 70
IV.3.3.2 METHODS . 70
IV.3.3.3 EXPERIMENTAL STUDIES . 70
IV.3.3.4 Results Analysis . 71
IV.3.3.5 abstract . 72

IV.4 CONCLUSION . 73

General Conclusion VII

Refrences VIII

List of Abbreviations XI

Appendices XII

Page V

List of Figures

I.1 The steps of the KDD process . 2
I.2 Graph mining Related Concept . 3
I.3 Prerequisite . 4
I.4 Finite Graphs . 5
I.5 Finite Graphs . 5
I.6 Finite Graphs . 6
I.7 Simple Graphs . 6
I.8 Multi Graph . 6
I.9 Null Graph . 7
I.10 Complete Graph . 7
I.11 Pseudo Graph . 7
I.12 Regular Graph . 8
I.13 Bipartite Graph . 8
I.14 Labelled Graph . 9
I.15 Digraph Graph . 9
I.16 Subgraph . 10
I.17 Types of Subgraph . 10
I.18 Connected or Disconnected Graph . 11
I.19 Cyclic Graph . 11
I.20 Isomorphisme Graph . 12
I.21 Subgraph Isomorphism . 12
I.22 Lattice(G) . 13
I.23 TREE in general view . 13
I.24 Single graph. 15
I.25 Frequent subgraphs . 15
I.26 Subgraph Isomorphism. 16
I.27 Search strategy . 17
I.28 Apriori based approach . 18

II.1 Artificial intelligence is a science and technology . 25
II.2 Intelligence Composed . 29
II.3 Task Classificationof AI . 32
II.4 Type of machine learning . 35
II.5 Unsupervised Learning . 37
II.6 Scikit-learn Algorithm cheat-sheet. 40
II.7 architecture neural network . 42
II.8 A mostly complet chart of Neural Networks . 43
II.9 neural network and it tells you that the image is of a dog 45

III.1 A categorization of deep learning methods on graphs 50

Page VI

LIST OF FIGURES

III.2 Different node sampling methods, in which the blue nodes indicate samples from one
batch and the arrows indicate the sampling directions. The red nodes in (B) represent
historical samples . 56

.1 Take a copy code from github for kipth and welling method of GCNN. XIII

.2 Take a copy code from github for li et al method of GCNN. XIII

.3 Take a copy code from github for LGCN method of GCNN. XIV

.4 Import LGCN method code. XIV

.5 Import Kipth and Welling method code . XIV

.6 Import Li et Al method code. XV

.7 LGCN run result. XV

.8 Kipth and welling run result . XVI

.9 li et al run result. XVI

Page VII

List of Tables

I.1 Categorization of exact matching (sub) graph isomorphism testing algorithms 16
I.2 The difference between FP growth and apriori algorithme 20

II.1 Programming Without and With AI . 25
II.2 History of AI . 27
II.3 Types of Intelligence . 28
II.4 Reasoning types . 29
II.5 Real Life Applications of Research Areas . 31
II.6 Table of Task Classificationof AI . 33
II.7 Table of Task Classificationof AI . 33

III.1 Main Distinctions among Deep Learning Methods on Graphs 50
III.2 A table for Commonly Used Notations . 51
III.3 The Main Characteristics of Graph Recurrent Neural Network (Graph RNNs) 52
III.4 A Comparison among Different Graph Convolutional Networks (GCNs). T.C. = Time

Complexity, M.G. = Multiple Graphs . 54
III.5 A Comparison among Different Graph Autoencoders (GAEs). T.C. = Time Complexity . 58
III.6 The Main Characteristics of Graph Reinforcement Learning 59
III.7 The Main Characteristics of Graph Adversarial Methods 59
III.8 Libraries of Deep Learning on Graphs . 60

IV.1 Dataset statistics . 66
IV.2 Classification Accuracy On Cora . 66
IV.3 Classification Accuracy on CiteSeer . 67
IV.4 Accuracy under 20 Labels per Class . 68
IV.5 Dataset statistics, as reported in Yang et al. (2016) . 69
IV.6 Summary of results in terms of classification accuracy (in percent). 70
IV.7 Summary of datasets used in our experiments [30, 31]. The Cora, Citeseer, and Pubmed

datasets are used for transductive learning experiments, while the PPI dataset is for in-
ductive learning experiments. The degree attribute listed is the average node degree of
each dataset, which helps the selection of the hyper-parameter k in LGCLs 71

IV.8 Results of transductive learning experiments for comparing the sub-graph training and
whole-graph training strategies on the Cora, Citeseer, and Pubmed datasets. For com-
parison, we conduct experiments on LGCNs that employ the same whole-graph training
strategy as GCNs, denoted as LGCNwhole . 72

IV.9 Results of transductive learning experiments for comparing the LGCNsub and GCN lay-
ers on the Cora, Citeseer, and Pubmed datasets. Using the network architecture of LGC-
Nsub , we replace LGCLs by GCN layers, resulting in the LGCNsub -GCN model . . . 73

IV.10Results of transductive learning experiments for comparing the LGCNsub and GCN layers
on the Cora, Citeseer, and Pubmed datasets. Using the network architecture of LGCNsub
, we replace LGCLs by GCN layers, resulting in the LGCNsub-GCN model 73

Page VIII

General Introduction

We live in an era when almost everything around us produces some kind of data, a search is recorded

on a search engine, a patient’s heartbeat data is generated in the hospital, atoms are represented, social

media is targeted, categorized and represented graphically, and therefore it must be stored somewhere.

Organizations and institutions have been storing massive amounts of data of various types and shapes for

several years now.

The data remains on backup tapes or drives, and that changes. Organizations now want to use this data

to gain insight to help understand current problems, seize new opportunities and generate greater profits.

The study and analysis of these volumes of data has a lot of advantage.

Being "bulky, high-dimensional, heterogeneous, complex, disorganized, incomplete, loud, and erratic"

has spawned a term called Big Data.

Big Data is entering the field of artificial intelligence as a good resource to apply its methods such as the

convolutional network in particular, as deep learning methods have become a source for solving most

of the paradoxes encountered in various fields and it represents a smart way to deal with the graphs by

which the huge data sets are represented in the parts of this graduation note.

Totaly, the goal of our work is make an effective comparison study of deep learning approaches ” graph

convolutional network ” used in the optimization of FSM algorithms, this studies can give a lot of solution

in the big data problems and lets the deal with the big data so simple, easy and understood.

This work divided to:

first chapter: review each of the types and characteristics of graphs.

second chapter: the concept and elements of artificial intelligence, and from here we reach machine

learning and deep learning.

third chapter: we talk in general about the various classifications of deep learning and about the principle

of its work and its characteristics, and in particular we talk about the methods available in the categories.

forth chapter: choose the graph convolutional network category and take a three codes of three methods

and compare their result.

Page IX

Chapter I

Graph Theory and Frequent Subgraph
Mining

Page 1

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

Introduction

This Chapter defines in details the concept of graph mining and focus primarily on frequent subgraph
mining (FSM), it is organized in two parts:

Part 01 mainly dedicated to present, in a simplified way, the basic notions related to graphs and graph
theory.

Part 02, focus on presenting “the state of the art” of Frequent Subgraph mining (FSM) algorithms
and techniques. A survey of current research in the field, and solutions to address the main research
issues are also presented.

I.1 data mining

Data mining is a particular step in the process of Knowledge Discovery in databases (KDD), which has a
to extract statistically significant and useful knowledge from a huge volume of raw data sets, extracting
such important knowledge can be crucial, sometimes essential, for the next phase in the analysis: the
modeling.[1]
The KDD process is outlined in figure I.1.[2]

Figure I.1: The steps of the KDD process. [2]

The additional steps in the KDD process include the data selection and projection, and the visual-
ization, and evaluation steps. During the past decade, the field of data mining has emerged as a novel
field of research, investigating interesting research issues and developing challenging real-life applica-
tions. The objective data formats in the beginning of data mining, were limited to relational tables and
transactions where each instance is represented by one row in a table or one transaction represented as a
set. However, the studies within the last several years began to extend the classes of considered data to
semi-structured data such as HTML and XML texts, symbolic sequences, and relations represented by
advanced logics. Frequent pattern mining for instance has been a focused theme in data mining research
for over a decade. Abundant literature has been dedicated to this research and tremendous progress has
been made, ranging from efficient and scalable algorithms for frequent item set mining in transaction
databases, mining association rules, to numerous research frontiers, such as sequential pattern mining.
However, the arising and variety of the above-mentioned complex semi structured data and the need
of discovering structural patterns in large datasets, which go beyond sets, sequences, and trees, toward
complicated structure, makes the frequent item sets and frequent sequence mining approaches inefficient
and unsuitable for such requirements, thus the emergence of graphs and frequent structural mining as a
solution to these concerns. Certainly graphs as a data structure can meet the demands of modeling com-
plicated substructure patterns and relations among data, and they are suitable representation for complex

Page 2

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

objects so from this perspective, there has been much interest in the mining of graph data, (often referred
to as graph based data mining or shortly graph mining).

I.2 Graph mining

Generally speaking, Graph mining is the process of discovering, retrieving and analyzing non trivial
patterns in graph shaped data. Graph based data mining or graph mining has a strong relation with
Multi-relational data mining. However, the main objective of graph mining is to provide new principles
and efficient algorithms to mine topological substructures embedded in graph data, while the main objec-
tive of multi-relational data mining is to provide principles to mine and/or learn the relational patterns,
represented by the expressive logical languages, the former is more geometry oriented and the latter more
logic and relation oriented.I.2 [3]

Figure I.2: Graph mining Related Concept. [3]

I.3 What can we do with graph mining?

• Compressing graphs without losing information

• Finding complex structures fast

• Recognizing communities and social patterns

• Study the propagation of viruses

• Predicting if two people will become friends

• Understanding what are the important nodes

• Showing how the network will evolve

• Helping the visualization of complex structures

• Finding roles, positive and negative influence prediction.[4]

Page 3

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.4 What is involved in graph mining?

• Basic graph algorithms (shortest paths, BFS, isomorphisms, traversals, random walks . . .)

• Storage and indexing

• Smart representations for compactness

• Modeling of problems as graphs

• Distance metrics and similarity measures

• Exact, Approximate, and heuristic algorithms

• Evolving structures

• Interactivity and online updates

• Complexity (most of the problems are not polynomially solvable). [4]

I.5 Frequent subgraph mining (FSM)

Among the various kinds of graph pattern, frequent subgraphs are very basic ones that can be discovered
in a set of graphs (graph database) or a single large graph, they are useful at characterizing graphs
sets, discriminating different groups of graphs, classifying and clustering graphs and building graphs
indices, frequent subgraph mining encompass all the techniques and methodologies used to discover
such patterns.
Before diving into the details of the variant frequent subgraph mining approaches and algorithms, let’s
review first some of graph theory basic concepts and terminologies.[4]

I.5.1 Prerequisite

A graph G = (V, E) consists of a set of vertices V = V1, V2, . . . and set of edges E = E1, E2,
The set of unordered pairs of distinct vertices whose elements are called edges of graph G such that each
edge is identified with an unordered pair (Vi, Vj) of vertices.
The vertices (Vi, Vj) are said to be adjacent if there is an edge Ek which is associated to Vi and Vj. In
such a case Vi and Vj are called end points and the edge Ek is said to be connect/joint of Vi and Vj.I.3[5]

Figure I.3: Prerequisite. [5]

Preliminary definitions

In the following paragraphs a number of widely used definitions, used later in this chapter are introduced

Page 4

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.6 Types and propertiefs of graphs

I.6.1 Finite Graphs

A graph is said to be finite if it has finite number of vertices and finite number of edges.(I.4) [5]

Figure I.4: Finite Graphs. [5]

I.6.2 Infinite Graph

A graph is said to be infinite if it has infinite number of vertices as well as infinite number of edges.(I.5)
[5]

Figure I.5: Finite Graphs. [5]

Page 5

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.6.3 Trivial Graph

A graph is said to be trivial if a finite graph contains only one vertex and no edge.(I.6) [5]

Figure I.6: Finite Graphs. [5]

I.6.4 Simple Graph

A simple graph is a graph which does not contains more than one edge between the pair of vertices. A
simple railway tracks connecting different cities is an example of simple graph.(I.7) [5]

Figure I.7: Simple Graphs. [5]

I.6.5 Multi Graph

Any graph which contain some parallel edges but doesn’t contain any self-loop is called multi graph. For
example A Road Map.(I.8) [5]

Figure I.8: Multi Graph. [5]

• Parallel Edges: If two vertices are connected with more than one edge than such edges are called
parallel edges that is many roots but one destination.

• Loop: An edge of a graph which join a vertex to itself is called loop or a self-loop.

Page 6

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.6.6 Null Graph

A graph of order n and size zero that is a graph which conta n number of vertices but do not contain any
edge.(I.9) [5]

Figure I.9: Null Graph. [5]

I.6.7 Complete Graph

A simple graph with n vertices is called a complete graph if the degree of each vertex is n-1, that is, one
vertex is attach with n-1 edges. A complete graph is also called Full Graph.(I.10) [5]

Figure I.10: Complete Graph. [5]

I.6.8 Pseudo Graph

A graph G with a self loop and some multiple edges is called pseudo graph.(I.11) [5]

Figure I.11: Pseudo Graph. [5]

Page 7

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.6.9 Regular Graph

A simple graph is said to be regular if all vertices of a graph G are of equal degree. All complete graphs
are regular but vice versa is not possible.(I.12) [5]

Figure I.12: Regular Graph. [5]

I.6.10 Bipartite Graph

A graph G = (V, E) is said to be bipartite graph if its vertex set V(G) can be partitioned into two non-
empty disjoint subsets. V1(G) and V2(G) in such a way that each edge e of E(G) has its one end in
V1(G) and other end in V2(G).
The partition V1 U V2 = V is called Bipartite of G. Here in the figure (I.13) :
V1(G)=V5, V4, V3
V2(G)=V1, V2 [5]

Figure I.13: Bipartite Graph. [5]

Page 8

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.6.11 Labelled Graph

If the vertices and edges of a graph are labelled with name, data or weight then it is called labelled graph.
It is also called Weighted Graph.(I.14) [5]

Figure I.14: Labelled Graph. [5]

I.6.12 Digraph Graph

A graph G = (V, E) with a mapping f such that every edge maps onto some ordered pair of vertices (Vi,
Vj) is called Digraph. It is also called Directed Graph. Ordered pair (Vi, Vj) means an edge between Vi
and Vj with an arrow directed from Vi to Vj [5].
Here in the figure (I.15) :e1 = (V1, V2), e2 = (V2, V3), e4 = (V2, V4)

Figure I.15: Digraph Graph. [5]

Page 9

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.6.13 Subgraph

A graph G = (V1, E1) is called subgraph of a graph G(V, E) if V1(G) is a subset of V(G) and E1(G) is a
subset of E(G) such that each edge of G1 has same end vertices as in G.(I.16)

Figure I.16: Subgraph. [5]

I.6.14 Types of Subgraph

• Vertex disjoint subgraph:Any two graph G1 = (V1, E1) and G2 = (V2, E2) are said to be vertex
disjoint of a graph G = (V, E) if V1(G1) intersection V2(G2) = null. In figure there is no common
vertex between G1 and G2.

• Edge disjoint subgraph:A subgraph is said to be edge disjoint if E1(G1) intersection E2(G2) =
null. In figure there is no common edge between G1 and G2.
Note: Edge disjoint subgraph may have vertices in common but vertex disjoint graph cannot have
common edge, so vertex disjoint subgraph will always be an edge disjoint subgraph[5].(I.17)

Figure I.17: Types of Subgraph. [5]

Page 10

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.6.15 Connected or Disconnected Graph

A graph G is said to be connected if for any pair of vertices (Vi, Vj) of a graph G are reachable from one
another. Or a graph is said to be connected if there exist atleast one path between each and every pair
of vertices in graph G, otherwise it is disconnected. A null graph with n vertices is disconnected graph
consisting of n components. Each component consist of one vertex and no edge.(I.18) [5]

Figure I.18: Connected or Disconnected Graph. [5]

I.6.16 Cyclic Graph

A graph G consisting of n vertices and n> = 3 that is V1, V2, V3- – – – – – Vn and edges (V1, V2), (V2,
V3), (V3, V4)- – – – – – — -(Vn, V1) are called cyclic graph.(I.19) [5]

Figure I.19: Cyclic Graph. [5]

I.6.17 Isomorphisme graph

Isomorphism is a very general concept that appears in several areas of mathematics. The word derives
from the Greek iso, meaning yequal," and morphosis, meaning "to form" or "to shape."
Two graphs are isomorphic, if they are structurally identical, Which means that they correspond in all
structural details. Formal vertex-to-vertex and edge -to-edge correspondence is called isomorphism.
Two graph are said to be isomorphic if They [6]

• have the same no of vertices.

• They have the same number of edges.

• They have an equal number of vertices with a given degree.

Page 11

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

Two Figure present respectively graph and subgraph isomorphism: (I.20)

Figure I.20: Isomorphisme Graph. [6]

The two graphs shown above are isomorphic, despite their different looking drawings.(I.21)

Figure I.21: Subgraph Isomorphism. [6]

I.6.18 Automorphism

An isomorphic mapping of the vertices of a graph G onto themselves (which also preserves the adjacency
relationship) is called an automorphism of a graph G.
Evidently, each graph possesses a trivial automorphism which is called the identity automorphism. For
some graphs, it is the only automorphism; these are called identity graphs. The set of all automorphisms
of a graph G forms a group which is called the automorphism group of G.[7]

I.6.19 Latice

Given a database G, a lattice is a structural form used to model the search space for finding frequent
subgraphs, where each vertex represents a connected subgraph of the graph in G. The lowest vertex
depicts the empty subgraph and the vertexes at the highest level depict the graphs in G. A vertex p is a
parent of the vertex q in the lattice, if q is a subgraph of p, and q is different from p by exactly one
edge. The vertex q is a child of p. All the subgraphs of each graph Gi ε G which occur in the
database are present in the lattice and every subgraph occurs only once in it.(I.22) [6]

Page 12

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

Figure I.22: Lattice(G). [5]

Example:
given a graph data set G = G1,G2,G3,G4, the corresponding Lattice(G), is given in Figure II-16.
In the figure, the lowest vertex /0 represents the empty subgraph, and the vertexes at the highest
level correspond to G1, G2, G3, and G4. The parents of the subgraph B−D are subgraphs
A−B−D (joining the edge A−B) and B−D−G (joining the edge D−G). Similarly, subgraphs
B−C and C−F are the children of the subgraph B−C−F. (I.22)

I.6.20 Density

The density of a graph G= (V;E) is calculated by: desnsity(G)=2 .|E|(|V | .(|V |−1)). The graph
density measures the ratio of the number of edges compared to the maximal number of edges
in a complete graph. A graph is said to be dense if the ratio is close to 1, and is considered as
sparse if the ratio is close to 0. [8]

I.6.21 Trees

Trees are non-linear or hierarchal data structure unlink linked lists and arrays. Those are linear
data structures. You can see an example of this in the picture of a tree structure above. Trees are
in-fact a special type of graph with only one way from point A to point B. They are a connect
of nodes which are connected through edges. Each node contains a value in addition they may
or may not have a child node. (I.23)

Figure I.23: TREE in general view .

Page 13

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.7 Tree Terminology

In a tree data structure, we use the following terminology... [9]

Root In a tree data structure, the first node is called as Root Node. Every tree must have a root
node. We can say that the root node is the origin of the tree data structure.

Edge In a tree data structure, the connecting link between any two nodes is called as EDGE.

Child In a tree data structure, the node which is descendant of any node is called as CHILD
Node. In simple words, the node which has a link from its parent node is called as child
node.

Parent In a tree data structure, the node which is a predecessor of any node is called as PAR-
ENT NODE.

Leaf In a tree data structure, the node which does not have a child is called as LEAF Node. In
simple words, a leaf is a node with no child.

Height In a tree data structure, the total number of edges from leaf node to a particular node in
the longest path is called as HEIGHT of that Node.

Depth In a tree data structure, the total number of egdes from root node to a particular node is
called as DEPTH of that Node.

Level In a tree data structure, the root node is said to be at Level 0 and the children of root
node are at Level 1 and the children of the nodes which are at Level 1 will be at Level 2
and so on.

Sub Tree In a tree data structure, each child from a node forms a subtree recursively. Every
child node will form a subtree on its parent node.

Path In a tree data structure, the sequence of Nodes and Edges from one node to another node
is called as PATH between that two Nodes.

Degree In a tree data structure, the total number of children of a node is called as DEGREE of
that Node.

Internal Nodes In a tree data structure, the node which has atleast one child is called as IN-
TERNAL Node. In simple words, an internal node is a node with atleast one child.

Siblings In a tree data structure, nodes which belong to same Parent are called as SIBLINGS.
In simple words, the nodes with the same parent are called Sibling nodes.

Page 14

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.8 Overview of FSM

Besides discovering graphs common to several graphs, there is also a variation of the problem
of frequent subgraph mining that consists of finding all frequent subgraphs in a single graph
rather than in a graph database. The idea is almost the same. The goal is also to discover
subgraphs that appear frequently or that are interesting. The only difference is how the support
(frequency) is calculated. For this variation, the support of a subgraph is the number of times
that it appears in the single input graph. For example, consider the following input graph(I.24).

Figure I.24: Single graph.

This graph contains seven vertices and six edges. If we perform frequent subgraph mining
on this single graph by setting the minsup parameter to 2, we can discover the five following
frequent subgraphs:(I.25)

Figure I.25: Frequent subgraphs .

Page 15

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

These subgraphs are said to be frequent because they appear at least twice in the input graph.
For example, consider “Frequent subgraph 5”. This subgraph has a support of 2 because it has
two occurrences in the input graph. Those two occurrences are highlighted below in red and
blue, respectively.(I.26)

Figure I.26: Subgraph Isomorphism.

I.8.1 Graph isomorphism detection

The kernel of FSM is (sub)graph isomorphism detection. Graph isomorphism is neither known
to be solvable in polynomial time nor NP-complete, while subgraph isomorphism, where we
wish to establish whether a subgraph is wholly contained within a super graph, is known to be
NP-complete . When restricting the graphs to trees, (sub)graph isomorphism detection becomes
(sub)tree isomorphism detection. Tree isomorphism detection can be solved in a linear time.
Subgraph isomorphism detection is fundamental to FSM. A significant number of “efficient”
techniques have been proposed, all directed at reducing, as far as possible, the computational
overhead associated with it. Subgraph isomorphism detection techniques can be roughly cate-
gorized as being either: exact matching or error tolerant matching . Most FSM algorithms adopt
exact matching. A categorization of the main exact matching subgraph isomorphism detection
algorithms is presented in Table (I.1) .

Algorihhme Main Techniques Mathing Types
Ullman Backtracking + look ahead Graph and subgraph isomorphism
SD Distance matrix + backtracking Graph isomorphism
Nauty Group theory + canonical labeling Graph isomorphism

Table I.1: Categorization of exact matching (sub) graph isomorphism testing algorithms. [10]

With reference to Table (I.1), Ullmann’s algorithm employs a backtracking procedure with a
look-ahead function to reduce the size of the search space [10] . The SD algorithm, in turn,
utilizes a distance matrix representation of a graph with a backtracking procedure to reduce the
search [11] .

The Nauty algorithm [10] uses group theory to transform graphs to be matched into a canon-
ical form so as to provide for more efficient and effective graph isomorphism checking. How-
ever, it has been noted [11] that the construction of the canonical forms can lead to exponential
complexity in the worst case. Although Nauty was regarded as the fastest graph isomorphism
algorithm by Conte [11] , Miyazaki in [12] demonstrated that there exist some categories of
graphs which required exponential time to generate the canonical labelling. The VF [13] and

Page 16

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

VF2 [12] use a Depth First Search (DFS) strategy, assisted by a set of feasibility rules to prune
the search tree. VF2 is an improved version of VF, that explores the search space more effec-
tively so that the matching time and the memory consumption are significantly reduced.

I.8.2 Search strategy

there is two kind of search basic strategies used for mining frequent subgraph ,the DFS and the
BFS [17]
The breadth-first search (BFS) strategy The BFS strategy checks the support of all candi-
dates of a certain size, before moving to the next level; i.e. first all possible candidate subgraphs
of size k will be generated and checked for support, subsequently the frequent subgraphs will
be retained and used to generate the candidate subgraphs of size (k+1). A BFS is necessary
if the subgraph candidates are generated by the join-based generation method. For example,
to generate the (k+1)-size subgraph candidates two k-size frequent graphs are needed, which
means that all frequent subgraphs of size k need to be determined first. This approach accounts
for effective candidate pruning, but at the cost of a high memory usage.I.27
The depth-first search (DFS) strategy The DFS strategy first checks the support of a candidate
subgraph of size k; if this subgraph is frequent it will be extended to size (k+1) and checked
for support again (I.27). The subgraph will continue to be extended until it is no longer fre-
quent. Compared to the BFS this approach requires less memory but at the cost of less effective
pruning.

Figure I.27: Search strategy. [17]

Search strategy. a Breadth-first search (BFS), which will exhaust all relevant candidate
subgraphs of a given size before proceeding to the next size. Candidate subgraphs of a larger
size are then generated based on joining two subgraphs of a smaller size. b Depth-first search
(DFS), which will explore an entire branch of the subgraph lattice before restarting at the
top with a different branch. New candidate subgraphs are extended following a fixed set of
rules until it drops below the frequency threshold or has reached a predefined maximum size.

I.8.3 FSM algorithmic approaches

There are two approaches by which frequent sub graphs can be found in a given graph / database.

∗ Apriori – based approach

∗ Pattern-growth approach

These two categories are similar in spirit to counterparts found in Association Rule Mining
(ARM), namely the Apriori algorithm and FP-growth algorithm respectively. Before defining
each of them let’s review first the apriority property.

Page 17

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.8.3.1 Apriori Property

The Apriori property also known as the downward closure property (DCP), expresses a mono-
tonic decrease of an evaluation criterion accompanying with the progress of a sequential pattern
mining. It is activated in order to efficiently discover all frequent sequential patterns, in simple
terms this property impose that if a graph is frequent, then all of its subgraphs will also be fre-
quent, thus the frequency or the support of a sequential graph is always decreasing or remaining
constant, and never increases to overpass the support of its parent subgraphs.
This property must be hold for both the Apriori and the Pattern growth based algorithms to
safely prune the candidates that are not frequent.[33]

I.8.3.2 Apriori based approach

• The Apriori property (anti-monotonicity): A size-k subgraph is frequent if and only if all
of its subgraphs are frequent [1]

• A candidante size-(k+1) edge/vertex subgaph is generated if its corresponding two k-
edge/vertex subgraph are frequent

• Iterative mining process:

– Candidate-generation →candidant prening →support counting →candidante elimi-
nation. [18]

Figure I.28: Apriori based approach. [18]

I.8.3.3 algorithme AprioriGraph

AprioriGraph

• Levell wise mining method

• Size of new substructures is increased by 1

• Generated by joining two similar but slighty different frequent sub-graphs

• Frequent is then checked.[18]

Page 18

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.8.3.4 Pattern Growth Approach

1. Initially, start with the frequent vertices as frequent graphs.

2. Extend these graphs by adding a new edge such that newly formed graphs are frequent
graphs.

3. for each discovered graph g,k it performs extensions recursevely untel all the frequent
graphs with g embedded are discovered.

4. The recursion stops once no frequent graph can be generated.[19]

I.8.3.5 algorithme PatternGrowthGraph

Simplistic Pattern Groweth-based Frequent Substructure Mining [19]

Page 19

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.8.4 Comparison between

Comparison between FP growth algorithm and Apriori algorithm. [20]

FP growth algorithm Apriori algorithm

FP growth algorithm is faster than Apriori

algorithm.
It is slower than FP growth algorithm.

FP growth algorithm is an array

based algorithm.
Apriori algorithm is a tree-based algorithm.

FP growth algorithm required only

two database scan.

It requires multiple database scan to

generate a candidant set.

It uses depth-first search. It uses breadth-furst serch.

Table I.2: The difference between FP growth and apriori algorithme. [20]

Page 20

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.9 Other Applications

Apart from Graph classification, Clustering and indexing FSM has many applications in inter-
disciplinary research such as chemical informatics , bioinformatics .[21] For example, Maximal
subgraph mining is used in discovering structure motifs in a graph of homology protein where
they encode the maximal structure commonalities within the group. It also has a cardinal influ-
ence in social networking and ego networks as well. Below tabular column shows a list of FSM
algorithms in a 2D matrix form in which ith row and jth column has a value x.

(ith row) i – denotes the name of the Algorithm
(jth row) j – candidate generation method
x – candidate graph representation.

Approach Algorithm
Candidate Generation

Level-Wise

join

Right-most

path Extn

Extension

and join

Paths, trees

and Graphs-

Enumeratin

A Priori

FSG
Adjacency

List
- - -

AGM CAM - - -

HSIGRAM CAM - - -

FFSM - - CAM -

Pattern-growth

gSpan -
Adjacency

List
- -

Gaston - - - Hash Table

MoFa - -
Embedding

List
-

SUBDUE CAM - - -

CloseGraph -
Adjacency

List
- -

Page 21

CHAPTER I. GRAPH THEORY AND FREQUENT SUBGRAPH MINING

I.10 Conclusion

On the work above we introduced the chapter by defining graph mining,then we gave some pre-
liminary notions of graphs and graph theory. After that we focused in this chapter on Frequent
Subgraph Mining (FSM), and we tried to gave the major operations that an FSM algorithm has
to perform in order to find subgraphs, for instance candidate generation, isomorphism checking
and support counting and presented the techniques associated to perform each of them, finally
we presented the FSM algorithmic approaches, Apriori and Pattern Growth.

Page 22

Chapter II

General Concept for Deep Learning

Page 23

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.1 Introduction

What used to be just a pipe dream in the realms of science fiction, artificial intelligence (AI) is
now mainstream technology in our everyday lives with applications in image and voice recog-
nition, language translations, chatbots, and predictive data analysis. In this part, we’ll introduce
AI along with its related terms machine learning and deep learning. By the end of the part you
should understand these terms, how things generally work.[34]

II.2 Artificial Intelligence

II.2.1 What is Artificial Intelligence?

According to the father of Artificial Intelligence John McCarthy, it is “The science and engi-
neering of making intelligent machines, especially intelligent computer programs”. Artificial
Intelligence is a way of making a computer, a computer-controlled robot, or a software think
intelligently, in the similar manner the intelligent humans think. AI is accomplished by study-
ing how human brain thinks, and how humans learn, decide, and work while trying to solve a
problem, and then using the outcomes of this study as a basis of developing intelligent software
and systems [22].

II.2.2 Philosophy of AI

While exploiting the power of the computer systems, the curiosity of human, lead him to won-
der, “Can a machine think and behave like humans do?” Thus, the development of AI started
with the intention of creating similar intelligence in machines that we find and regard high in
humans [22].

II.2.3 Goals of AI

To Create Expert Systems: The systems which exhibit intelligent behavior, learn,[22]

• Demonstrate, explain, and advice its users. To Implement Human Intelligence in Ma-
chines: Creating systems that.

• Understand, think, learn, and behave like humans.

II.2.4 What Contributes to AI?

Artificial intelligence is a science and technology based on disciplines such as Computer Sci-
ence, Biology, Psychology, Linguistics, Mathematics, and Engineering. A major thrust of AI
is in the development of computer functions associated with human intelligence, such as rea-
soning, learning, and problem solving. Out of the following areas, one or multiple areas can
contribute to build an intelligent system [22].(II.1)

II.2.5 Programming Without and With AI

The programming without and with AI is different in following ways:(II.1) [3]

II.2.6 What is AI Technique?

In the real world, the knowledge has some unwelcomed properties:

∗ Asterisk Its volume is huge, next to unimaginable.

Page 24

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

Programming Without AI Programming With AI

A computer program without AI can answer the specific

questions it is meant to solve.

A computer program with AI can answer the generic questions

it is meant to solve.

Modification in the program leads to change in its structure.

AI programs can absorb new modifications by putting

highly independent pieces of information together.

Hence you can modify even a minute piece of information of program

without affecting its structure.

Modification is not quick and easy. It may lead to

affecting the program adversely.
Quick and Easy program modification.

Table II.1: Programming Without and With AI. [3]

∗ Asterisk It is not well-organized or well-formatted.

∗ Asterisk It keeps changing constantly.

AI Technique is a manner to organize and use the knowledge efficiently in such a way that:

∗ It should be perceivable by the people who provide it.

∗ It should be easily modifiable to correct errors.

∗ It should be useful in many situations though it is incomplete or inaccurate.

AI techniques elevate the speed of execution of the complex program it is equipped with.[22]

II.2.7 Applications of AI

AI has been dominant in various fields such as [22]:

• Gaming: AI plays crucial role in strategic games such as chess, poker, tic-tac-toe, etc.,
where machine can think of large number of possible positions based on heuristic knowl-
edge. Natural Language .

Figure II.1: Artificial intelligence is a science and technology. [22]

Page 25

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

• Processing:It is possible to interact with the computer that understands natural language
spoken by humans.

• Expert Systems:There are some applications which integrate machine, software, and spe-
cial information to impart reasoning and advising. They provide explanation and advice
to the users .

• Vision Systems:These systems understand, interpret, and comprehend visual input on the
computer. For example,

– A spying aeroplane takes photographs which are used to figure out spatial informa-
tion or map of the areas.

– Doctors use clinical expert system to diagnose the patient.
– Police use computer software that can recognize the face of criminal with the stored

portrait made by forensic artist.

• Speech Recognition:Some intelligent systems are capable of hearing and comprehending
the language in terms of sentences and their meanings while a human talks to it. It can
handle different accents, slang words, noise in the background, change in human’s noise
due to cold, etc.

• Handwriting Recognition : The handwriting recognition software reads the text written
on paper by a pen or on screen by a stylus. It can recognize the shapes of the letters and
convert it into editable text .

• Intelligent Robots: Robots are able to perform the tasks given by a human. They have
sensors to detect physical data from the real world such as light, heat, temperature, move-
ment, sound, bump, and pressure. They have efficient processors, multiple sensors and
huge memory, to exhibit intelligence. In addition, they are capable of learning from their
mistakes and they can adapt to the new environment .

Page 26

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.2.8 History of AI

Here is the history of AI during 20th century:[22]

Year Milestone / Innovation

1923
Karel Čapek play named “Rossum’s Universal Robots” (RUR) opens in London,

first use of the word "robot" in English.

1943 Foundations for neural networks laid.

1945 Isaac Asimov, a Columbia University alumni, coined the term Robotics.

1950
Alan Turing introduced Turing Test for evaluation of intelligence and published

Computing Machinery and Intelligence.

Claude Shannon published Detailed Analysis of Chess Playing as a search.

1956
John McCarthy coined the term Artificial Intelligence.

Demonstration of the first running AI program at Carnegie Mellon University.

1958 John McCarthy invents LISP programming language for AI.

1964
Danny Bobrow’s dissertation at MIT showed that

computers can understand natural language well enough to solve algebra word problems correctly.

1965 Joseph Weizenbaum at MIT built ELIZA, an interactive problem that carries on a dialogue in English.

1969
Scientists at Stanford Research Institute

Developed Shakey, a robot, equipped with locomotion, perception, and problem solving.

1973
The Assembly Robotics group at Edinburgh University

built Freddy, the Famous Scottish Robot, capable of using vision to locate and assemble models.

1979 The first computer-controlled autonomous vehicle, Stanford Cart, was built.

1985 Harold Cohen created and demonstrated the drawing program, Aaron.

1990 Major advances in all areas of AI −

• Significant demonstrations in machine learning

• Case-based reasoning

• Multi-agent planning

• Scheduling

• Data mining, Web Crawler

• natural language understanding and translation

• Vision, Virtual Reality

• Games
1997 The Deep Blue Chess Program beats the then world chess champion, Garry Kasparov.

2000
Interactive robot pets become commercially available.

MIT displays Kismet, a robot with a face that expresses emotions.

The robot Nomad explores remote regions of Antarctica and locates meteorites.

Table II.2: History of AI. [22]

While studying artificially intelligence, you need to know what intelligence is. This chapter
covers Idea of intelligence, types, and components of intelligence.

Page 27

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.2.9 What is Intelligence?

The ability of a system to calculate, reason, perceive relationships and analogies, learn from
experience, store and retrieve information from memory, solve problems, comprehend complex
ideas, use natural language fluently, classify, generalize, and adapt new situations.[22]

II.2.10 Types of Intelligence

As described by Howard Gardner, an American developmental psychologist, the Intelligence
comes in multifold[22]:

Intelligence Description Example

Linguistic intelligence
The ability to speak, recognize, and use mechanisms

of phonology (speech sounds), syntax (grammar), and semantics (meaning).

Narrators, Orators

Musical intelligence
The ability to create, communicate with, and understand meanings made of sound,

understanding of pitch, rhythm.

Musicians, Singers,

Composers

Logical-mathematical

intelligence

The ability of use and understand relationships in

the absence of action or objects.

Understanding complex and abstract ideas.

Mathematicians, Scientists

Spatial intelligence

The ability to perceive visual or spatial

information, change it, and re-create visual images

without reference to the

objects, construct 3D images, and to move and rotate them.

Map readers, Astronauts,

Physicists

Bodily-Kinesthetic intelligence

The ability to use complete or part of the body to

solve problems or fashion products, control over fine and coarse motor

skills, and manipulate the objects.

Players, Dancers

Intra-personal intelligence
The ability to distinguish among one’s own feelings,

intentions, and motivations.

Gautam Buddhha

Interpersonal intelligence
The ability to recognize and make distinctions among

other people’s feelings, beliefs, and intentions.

Mass Communicators,

Interviewers

Table II.3: Types of Intelligence. [22]

You can say a machine or a system is artificially intelligent when it is equipped with at least
one and at most all intelligences in it.

Page 28

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.2.11 What is Intelligence Composed of?

The intelligence is intangible. It is composed of[22]:

• Reasoning

• Problem Solving

• Linguistic Intelligence

• Learning

• Perception

Figure II.2: Intelligence Composed. [22]

Let us go through all the components briefly:

1. Reasoning: It is the set of processes that enables us to provide basis for judgement,
making decisions, and prediction.
There are broadly two types :

Inductive Reasoning Deductive Reasoning

It conducts specific observations to makes

broad general statements.

It starts with a general statement and

examines the possibilities to

reach a specific, logical conclusion.

Even if all of the premises are true in a statement, inductive

reasoning allows for the conclusion to be false.

If something is true of a class of things in general,

it is also true

for all members of that class.

Example: “Nita is a teacher. All

teachers are studious. Therefore,

Nita is studious.”

Example: "All women of age above 60

years are grandmothers.

Shalini is 65 years. Therefore, Shalini is a

grandmother."

Table II.4: Reasoning types. [22]

Page 29

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

2. Learning: It is the activity of gaining knowledge or skill by studying, practising, being
taught, or experiencing something. Learning enhances the awareness of the subjects of
the study.
The ability of learning is possessed by humans, some animals, and AI-enabled systems.
Learning is categorized as:

• Auditory Learning It is learning by listening and hearing. For example, students
listening to recorded audio lectures.

• Episodic Learning To learn by remembering sequences of events that one has wit-
nessed or experienced. This is linear and orderly.

• Motor Learning It is learning by precise movement of muscles. For example, pick-
ing objects, Writing, etc.

• Observational Learning To learn by watching and imitating others. For example,
child tries to learn by mimicking her parent.

• Perceptual Learning It is learning to recognize stimuli that one has seen before. For
example, identifying and classifying objects and situations.

• Relational Learning It involves learning to differentiate among various stimuli on
the basis of relational properties, rather than absolute properties. For Example,
adding ‘little less’ salt at the time of cooking potatoes that came up salty last time,
when cooked with adding say a tablespoon of salt.

• Spatial learning It is learning through visual stimuli such as images, colors, maps,
etc. For Example, a person can create roadmap in mind before actually following the
road.

• Stimulus-Response Learning It is learning to perform a particular behavior when a
certain stimulus is present. For example, a dog raises its ear on hearing doorbell.

3. Problem solving: It is the process in which one perceives and tries to arrive at a desired
solution from a present situation by taking some path, which is blocked by known or
unknown hurdles.
Problem solving also includes decision making, which is the process of selecting the best
suitable alternative out of multiple alternatives to reach the desired goal are available.

4. Perception: It is the process of acquiring, interpreting, selecting, and organizing sensory
information.
Perception presumes sensing. In humans, perception is aided by sensory organs. In the
domain of AI, perception mechanism puts the data acquired by the sensors together in a
meaningful manner.

5. Linguistic Intelligence: It is one’s ability to use, comprehend, speak, and write the verbal
and written language. It is important in interpersonal communication.[22]

II.2.12 Difference between Human and Machine Intelligence

• Humans perceive by patterns whereas the machines perceive by set of rules and data.

• Humans store and recall information by patterns, machines do it by searching algorithms.
For example, the number 40404040 is easy to remember, store and recall as its pattern is
simple.

• Humans can figure out the complete object even if some part of it is missing or distorted;
whereas the machines cannot correctly.[22]

Page 30

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.2.13 Real Life Applications of Research Areas

There is a large array of applications where AI is serving common people in their day-to-day
lives[22]:

Sr.No. Research Areas Real Life Application

1
Expert Systems

Examples − Flight-tracking systems, Clinical systems.

2

Natural Language Processing

Examples: Google Now feature, speech recognition,

Automatic voice output.

3

Neural Networks

Examples − Pattern recognition systems such as face

recognition, character recognition, handwriting recognition.

4

Robotics

Examples − Industrial robots for moving, spraying,

painting, precision checking, drilling, cleaning, coating, carving, etc.

5
Fuzzy Logic Systems

Examples − Consumer electronics, automobiles, etc.

Table II.5: Real Life Applications of Research Areas. [22]

Page 31

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.2.14 Task Classificationof AI

The domain of AI is classified into Formal tasks, Mundane tasks, and Expert tasks[22].(II.3)

Figure II.3: Task Classificationof AI. [22]

Humans learn mundane (ordinary) tasks since their birth. They learn by perception, speaking,
using language, and locomotives. They learn Formal Tasks and Expert Tasks later, in that order.

For humans, the mundane tasks are easiest to learn. The same was considered true before
trying to implement mundane tasks in machines. Earlier, all work of AI was concentrated in the
mundane task domain.

Page 32

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

Task Domains of Artificial Intelligence

Mundane (Ordinary) Tasks Formal Tasks Expert Tasks

Perception:

-Computer Vision

-Speech, Voice

-Mathematics

-Geometry

-Logic

-Integration and Differentiation

-Engineering

-Fault Finding

-Manufacturing

-Monitoring

Natural Language Processing:

-Understanding

-Language Generation

-Language Translation

Games:

-Go

-Chess (Deep Blue)

-Ckeckers

Scientific Analysis

Common Sense Verification Financial Analysis

Reasoning Theorem Proving Medical Diagnosis

Planing Creativity

Robotics:

-Locomotive

Table II.6: Table of Task Classificationof AI

Table II.7: Table of Task Classificationof AI. [22]

Later, it turned out that the machine requires more knowledge, complex knowledge repre-
sentation, and complicated algorithms for handling mundane tasks. This is the reason why AI
work is more prospering in the Expert Task domain now, as the expert task domain needs
expert knowledge without common sense, which can be easier to represent and handle.[22]

Page 33

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.3 Machine learning

Today’s Artificial Intelligence (AI) has far surpassed the hype of blockchain and quantum com-
puting. This is due to the fact that huge computing resources are easily available to the common
man. The developers now take advantage of this in creating new Machine Learning models and
to re-train the existing models for better performance and results. The easy availability of High
Performance Computing (HPC) has resulted in a sudden increased demand for IT professionals
having Machine Learning skills.

In this section , you will learn in detail about:

• What is the crux of machine learning?

• What are the different types in machine learning?

• What are the different algorithms available for developing machine learning models?

• What tools are available for developing these models?

• What are the programming language choices?

• What platforms support development and deployment of Machine Learning applications?

• What IDEs (Integrated Development Environment) are available?

• How to quickly upgrade your skills in this important area?[23].

II.3.1 Statistical Techniques

The development of today’s AI applications started with using the age-old traditional statis-
tical techniques. You must have used straight-line interpolation in schools to predict a future
value. There are several other such statistical techniques which are successfully applied in de-
veloping so-called AI programs. We say “so-called” because the AI programs that we have
today are much more complex and use techniques far beyond the statistical techniques used by
the early AI programs.

Some of the examples of statistical techniques that are used for developing AI applications
in those days and are still in practice are listed here:

• Regression

• Classification

• Clustering

• Probability Theories

• Decision Trees

Here we have listed only some primary techniques that are enough to get you started on AI
without scaring you of the vastness that AI demands. If you are developing AI applications
based on limited data, you would be using these statistical techniques.

However, today the data is abundant. To analyze the kind of huge data that we possess
statistical techniques are of not much help as they have some limitations of their own. More
advanced methods such as deep learning are hence developed to solve many complex problems.

As we move ahead , we will understand what Machine Learning is and how it is used for
developing such complex AI applications.[23]

Page 34

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.4 Machine Learning – Categories of Machine Learning

Machine Learning is broadly categorized under the following headings:(II.4)

Figure II.4: Type of machine learning. [23]

Machine learning evolved from left to right as shown in the above diagram.

• Initially, researchers started out with Supervised Learning. This is the case of housing
price prediction discussed earlier.

• This was followed by unsupervised learning, where the machine is made to learn on its
own without any supervision.

• Scientists discovered further that it may be a good idea to reward the machine when it
does the job the expected way and there came the Reinforcement Learning.

• Very soon, the data that is available these days has become so humongous that the con-
ventional techniques developed so far failed to analyze the big data and provide us the
predictions.

• Thus, came the deep learning where the human brain is simulated in the Artificial Neural
Networks (ANN) created in our binary computers.

• The machine now learns on its own using the high computing power and huge memory
resources that are available today.

• It is now observed that Deep Learning has solved many of the previously unsolvable
problems.

• The technique is now further advanced by giving incentives to Deep Learning networks
as awards and there finally comes Deep Reinforcement Learning.

Let us now study each of these categories in more detail.[23]

II.4.1 Supervised Learning

Supervised learning is analogous to training a child to walk. You will hold the child’s hand,
show him how to take his foot forward, walk yourself for a demonstration and so on, until the
child learns to walk on his own.

Page 35

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.4.1.1 Regression

Similarly, in the case of supervised learning, you give concrete known examples to the com-
puter. You say that for given feature value x1 the output is y1, for x2 it is y2, for x3 it is y3, and
so on. Based on this data, you let the computer figure out an empirical relationship between x
and y.

Once the machine is trained in this way with a sufficient number of data points, now you would
ask the machine to predict Y for a given X. Assuming that you know the real value of Y for this
given X, you will be able to deduce whether the machine’s prediction is correct.

Thus, you will test whether the machine has learned by using the known test data. Once you
are satisfied that the machine is able to do the predictions with a desired level of accuracy (say
80 to 90%) you can stop further training the machine.

Now, you can safely use the machine to do the predictions on unknown data points, or ask the
machine to predict Y for a given X for which you do not know the real value of Y. This training
comes under the regression that we talked about earlier.

II.4.1.2 Classification

You may also use machine learning techniques for classification problems. In classification
problems, you classify objects of similar nature into a single group. For example, in a set of
100 students say, you may like to group them into three groups based on their heights - short,
medium and long. Measuring the height of each student, you will place them in a proper group.

Now, when a new student comes in, you will put him in an appropriate group by measuring his
height. By following the principles in regression training, you will train the machine to clas-
sify a student based on his feature – the height. When the machine learns how the groups are
formed, it will be able to classify any unknown new student correctly. Once again, you would
use the test data to verify that the machine has learned your technique of classification before
putting the developed model in production.

Supervised Learning is where the AI really began its journey. This technique was applied suc-
cessfully in several cases. You have used this model while doing the hand-written recognition
on your machine. Several algorithms have been developed for supervised learning. You will
learn about them in the following chapters.

II.4.2 Unsupervised Learning

In unsupervised learning, we do not specify a target variable to the machine, rather we ask ma-
chine “What can you tell me about X?”. More specifically, we may ask questions such as given
a huge data set X, “What are the five best groups we can make out of X?” or “What features
occur together most frequently in X?”. To arrive at the answers to such questions, you can
understand that the number of data points that the machine would require to deduce a strategy
would be very large. In case of supervised learning, the machine can be trained with even about
few thousands of data points. However, in case of unsupervised learning, the number of data
points that is reasonably accepted for learning starts in a few millions. These days, the data
is generally abundantly available. The data ideally requires curating. However, the amount of
data that is continuously flowing in a social area network, in most cases data curation is an
impossible task.

The following figure shows the boundary between the yellow and red dots as determined by
unsupervised machine learning. You can see it clearly that the machine would be able to deter-

Page 36

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

mine the class of each of the black dots with a fairly good accuracy.(II.5)

Figure II.5: Unsupervised Learning. [23]

The unsupervised learning has shown a great success in many modern AI applications, such as
face detection, object detection, and so on.

II.4.3 Reinforcement Learning

Consider training a pet dog, we train our pet to bring a ball to us. We throw the ball at a
certain distance and ask the dog to fetch it back to us. Every time the dog does this right, we
reward the dog. Slowly, the dog learns that doing the job rightly gives him a reward and then
the dog starts doing the job right way every time in future. Exactly, this concept is applied in
“Reinforcement” type of learning. The technique was initially developed for machines to play
games. The machine is given an algorithm to analyze all possible moves at each stage of the
game. The machine may select one of the moves at random. If the move is right, the machine is
rewarded, otherwise it may be penalized. Slowly, the machine will start differentiating between
right and wrong moves and after several iterations would learn to solve the game puzzle with a
better accuracy. The accuracy of winning the game would improve as the machine plays more
and more games.

The entire process may be depicted in the following diagram:

This technique of machine learning differs from the supervised learning in that you need not

Page 37

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

supply the labelled input/output pairs. The focus is on finding the balance between exploring
the new solutions versus exploiting the learned solutions.

II.4.4 Deep Learning

The deep learning is a model based on Artificial Neural Networks (ANN), more specifically
Convolutional Neural Networks (CNN)s. There are several architectures used in deep learning
such as deep neural networks, deep belief networks, recurrent neural networks, and convolu-
tional neural networks.

These networks have been successfully applied in solving the problems of computer vision,
speech recognition, natural language processing, bioinformatics, drug design, medical image
analysis, and games. There are several other fields in which deep learning is proactively ap-
plied. The deep learning requires huge processing power and humongous data, which is gener-
ally easily available these days.

We will talk about deep learning more in detail in the coming chapters.

II.4.5 Deep Reinforcement Learning

The Deep Reinforcement Learning (DRL) combines the techniques of both deep and reinforce-
ment learning. The reinforcement learning algorithms like Q-learning are now combined with
deep learning to create a powerful DRL model. The technique has been with a great success in
the fields of robotics, video games, finance and healthcare. Many previously unsolvable prob-
lems are now solved by creating DRL models. There is lots of research going on in this area
and this is very actively pursued by the industries.

So far, you have got a brief introduction to various machine learning models, now let us explore
slightly deeper into various algorithms that are available under these models.

II.5 Machine Learning – Supervised Learning

Supervised learning is one of the important models of learning involved in training machines.
This chapter talks in detail about the same.

II.5.1 Algorithms for Supervised Learning

There are several algorithms available for supervised learning. Some of the widely used algo-
rithms of supervised learning are as shown below:

• k-Nearest Neighbors

• Decision Trees

• Naive Bays

• Logistic Regression

• Support Vector Machines

II.5.2 k-Nearest Neighbours

The k-Nearest Neighbours, which is simply called kNN is a statistical technique that can be
used for solving for classification and regression problems.

Page 38

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.5.3 Decision Trees

A simple decision tree in a flowchart format is shown below:

You would write a code to classify your input data based on this flowchart. The flowchart is
self-explanatory and trivial. In this scenario, you are trying to classify an incoming email to
decide when to read it.

In reality, the decision trees can be large and complex. There are several algorithms available to
create and traverse these trees. As a Machine Learning enthusiast, you need to understand and
master these techniques of creating and traversing decision trees.

II.5.4 Naive Bayes

Naive Bayes is used for creating classifiers. Suppose you want to sort out (classify) fruits of
different kinds from a fruit basket. You may use features such as color, size and shape of a fruit,
For example, any fruit that is red in color, is round in shape and is about 10 cm in diameter
may be considered as Apple. So to train the model, you would use these features and test the
probability that a given feature matches the desired constraints. The probabilities of different
features are then combined to arrive at a probability that a given fruit is an Apple. Naive Bayes
generally requires a small number of training data for classification.

Page 39

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.5.5 Logistic Regression

Look at the following diagram. It shows the distribution of data points in XY plane.[23]

From the diagram, we can visually inspect the separation of red dots from green dots. You may
draw a boundary line to separate out these dots. Now, to classify a new data point, you will just
need to determine on which side of the line the point lies.

II.5.6 Machine Learning – Scikit-learn Algorithm

Fortunately, most of the time you do not have to code the algorithms mentioned in the previous
lesson. There are many standard libraries which provide the ready-to-use implementation of
these algorithms. One such toolkit that is popularly used is scikit-learn.
The figure below illustrates the kind of algorithms which are available for your use in this
library.(II.6)

Figure II.6: Scikit-learn Algorithm cheat-sheet.

Page 40

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

The use of these algorithms is trivial and since these are well and field tested, you can safely
use them in your AI applications. Most of these libraries are free to use even for commercial
purposes.

II.6 Machine Learning – Unsupervised Learning

So far what you have seen is making the machine learn to find out the solution to our target. In
regression, we train the machine to predict a future value. In classification, we train the machine
to classify an unknown object in one of the categories defined by us. In short, we have been
training machines so that it can predict Y for our data X. Given a huge data set and not estimating
the categories, it would be difficult for us to train the machine using supervised learning. What if
the machine can look up and analyze the big data running into several Gigabytes and Terabytes
and tell us that this data contains so many distinct categories?

As an example, consider the voter’s data. By considering some inputs from each voter (these
are called features in AI terminology), let the machine predict that there are so many voters who
would vote for X political party and so many would vote for Y, and so on. Thus, in general, we
are asking the machine given a huge set of data points X, “What can you tell me about X?”. Or
it may be a question like “What are the five best groups we can make out of X?”. Or it could be
even like “What three features occur together most frequently in X?”.

This is exactly the Unsupervised Learning is all about.

II.6.1 Algorithms for Unsupervised Learning

Let us now discuss one of the widely used algorithms for classification in unsupervised machine
learning.

II.6.2 k-means clustering

Clustering is a type of unsupervised learning that automatically forms clusters of similar things.
It is like automatic classification. You can cluster almost anything, and the more similar the
items are in the cluster, the better the clusters are. In this chapter, we are going to study one
type of clustering algorithm called k-means. It is called k-means because it finds ‘k’ unique
clusters, and the center of each cluster is the mean of the values in that cluster.

II.6.3 Cluster Identification

Cluster identification tells an algorithm, “Here’s some data. Now group similar things together
and tell me about those groups.” The key difference from classification is that in classification
you know what you are looking for. While that is not the case in clustering.

Clustering is sometimes called unsupervised classification because it produces the same result
as classification does but without having predefined classes.

Now, we are comfortable with both supervised and unsupervised learning. To understand the
rest of the machine learning categories, we must first understand Artificial Neural Networks
(ANN), which we will learn in the next chapter...

II.6.4 Machine Learning – Artificial Neural Networks

The idea of artificial neural networks was derived from the neural networks in the human brain.
The human brain is really complex. Carefully studying the brain, the scientists and engineers

Page 41

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

came up with an architecture that could fit in our digital world of binary computers. One such
typical architecture is shown in the diagram below:

Figure II.7: architecture neural network. [23]

There is an input layer which has many sensors to collect data from the outside world. On
the right hand side, we have an output layer that gives us the result predicted by the network.
In between these two, several layers are hidden. Each additional layer adds further complexity
in training the network, but would provide better results in most of the situations. There are
several types of architectures designed which we will discuss now.

Page 42

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.6.5 ANN Architectures

The diagram below shows several ANN architectures developed over a period of time and are
in practice today.(II.8) [24]

Figure II.8: A mostly complet chart of Neural Networks. [24]

Each architecture is developed for a specific type of application. Thus, when you use a neural
network for your machine learning application, you will have to use either one of the existing
architecture or design your own. The type of application that you finally decide upon depends
on your application needs. There is no single guideline that tells you to use a specific network
architecture.

Page 43

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.7 Machine Learning – Deep Learning

Deep Learning uses ANN. First we will look at a few deep learning applications that will give
you an idea of its power.

II.7.1 Applications

Deep Learning has shown a lot of success in several areas of machine learning applications.

Self-driving Cars: The autonomous self-driving cars use deep learning techniques. They gen-
erally adapt to the ever changing traffic situations and get better and better at driving over
a period of time.

Speech Recognition: Another interesting application of Deep Learning is speech recognition.
All of us use several mobile apps today that are capable of recognizing our speech. Apple’s
Siri, Amazon’s Alexa, Microsoft’s Cortena and Google’s Assistant – all these use deep
learning techniques.

Mobile Apps: We use several web-based and mobile apps for organizing our photos. Face de-
tection, face ID, face tagging, identifying objects in an image – all these use deep learning.

II.7.2 Untapped Opportunities of Deep Learning

After looking at the great success deep learning applications have achieved in many domains,
people started exploring other domains where machine learning was not so far applied. There
are several domains in which deep learning techniques are successfully applied and there are
many other domains which can be exploited. Some of these are discussed here:

• Agriculture is one such industry where people can apply deep learning techniques to im-
prove the crop yield.

• Consumer finance is another area where machine learning can greatly help in providing
early detection on frauds and analyzing customer’s ability to pay.

• Deep learning techniques are also applied to the field of medicine to create new drugs and
provide a personalized prescription to a patient. The possibilities are endless and one has
to keep watching as the new ideas and developments pop up frequently.

II.7.3 What is Required for Achieving More Using Deep Learning?

To use deep learning, supercomputing power is a mandatory requirement. You need both mem-
ory as well as the CPU to develop deep learning models. Fortunately, today we have an easy
availability of HPC – High Performance Computing. Due to this, the development of the deep
learning applications that we mentioned above became a reality today and in the future too we
can see the applications in those untapped areas that we discussed earlier.

Now, we will look at some of the limitations of deep learning that we must consider before
using it in our machine learning application.

II.7.4 Deep Learning -Disadvantages

Some of the important points that you need to consider before using deep learning are listed
below: [23]

• Black Box approach

Page 44

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

• Duration of Development

• Amount of Data

• Computationally Expensive

We will now study each one of these limitations in detail.

II.7.5 Black Box approach

An ANN is like a blackbox. You give it a certain input and it will provide you a specific output.
The following diagram shows you one such application where you feed an animal image to a
neural network and it tells you that the image is of a dog.(II.9)

Figure II.9: neural network and it tells you that the image is of a dog. [23]

Why this is called a black-box approach is that you do not know why the network came up with
a certain result. You do not know how the network concluded that it is a dog? Now consider
a banking application where the bank wants to decide the creditworthiness of a client. The
network will definitely provide you an answer to this question. However, will you be able to
justify it to a client? Banks need to explain it to their customers why the loan is not sanctioned?

II.7.6 Duration of Development

The process of training a neural network is depicted in the diagram below:

You first define the problem that you want to solve, create a specification for it, decide on the
input features, design a network, deploy it and test the output. If the output is not as expected,
take this as a feedback to restructure your network. This is an iterative process and may require
several iterations until the time network is fully trained to produce desired outputs.

Page 45

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

II.7.7 Amount of Data

The deep learning networks usually require a huge amount of data for training, while the tra-
ditional machine learning algorithms can be used with a great success even with just a few
thousands of data points. Fortunately, the data abundance is growing at 40% per year and CPU
processing power is growing at 20% per year.

II.7.8 Computationally Expensive

Training a neural network requires several times more computational power than the one re-
quired in running traditional algorithms. Successful training of deep Neural Networks may
require several weeks of training time.

In contrast to this, traditional machine learning algorithms take only a few minutes/hours to
train. Also, the amount of computational power needed for training deep neural network heav-
ily depends on the size of your data and how deep and complex the network is?

After having an overview of what Machine Learning is, its capabilities, limitations, and appli-
cations, let us now dive into learning “Machine Learning”.

II.7.9 Mathematical Notation

Most of the machine learning algorithms are heavily based on mathematics. The level of math-
ematics that you need to know is probably just a beginner level. What is important is that you
should be able to read the notation that mathematicians use in their equations.

For example - if you are able to read the notation and comprehend what it means, you are ready
for learning machine learning. If not, you may need to brush up your mathematics knowledge.

II.7.10 Probability Theory

Here is an example to test your current knowledge of probability theory: Classifying with con-
ditional probabilities.

II.7.11 Visualization

In many cases, you will need to understand the various types of visualization plots to understand
your data distribution and interpret the results of the algorithm’s output.

II.8 Machine Learning – Implementing Machine Learning

To develop ML applications, you will have to decide on the platform, the IDE and the language
for development. There are several choices available. Most of these would meet your require-
ments easily as all of them provide the implementation of AI algorithms discussed so far.

If you are developing the ML algorithm on your own, the following aspects need to be under-
stood carefully:

The language of your choice – this essentially is your proficiency in one of the languages sup-
ported in ML development.

The IDE that you use – This would depend on your familiarity with the existing IDEs and your
comfort level.

Development platform – There are several platforms available for development and deployment.

Page 46

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

Most of these are free-to-use. In some cases, you may have to incur a license fee beyond a cer-
tain amount of usage. Here is a brief list of choice of languages, IDEs and platforms for your
ready reference.

II.8.1 Language Choice

Here is a list of languages that support ML development:

• Python

• R

• Matlab

• Octave

• Julia

• C++

• C

This list is not essentially comprehensive; however, it covers many popular languages used in
machine learning development. Depending upon your comfort level, select a language for the
development, develop your models and test.

II.8.2 IDEs

Here is a list of IDEs which support ML development:

• R Studio

• Pycharm

• iPython/Jupyter Notebook

• Julia

• Spyder

• Anaconda

• Google –Colab

• Rodeo

The above list is not essentially comprehensive. Each one has its own merits and demerits. The
reader is encouraged to try out these different IDEs before narrowing down to a single one.

II.8.3 Platforms

Here is a list of platforms on which ML applications can be deployed:

• IBM

• Microsoft Azure

• Google Cloud

Page 47

CHAPTER II. GENERAL CONCEPT FOR DEEP LEARNING

• Amazon

• Mlflow

Once again this list is not exhaustive. The reader is encouraged to sign-up for the abovemen-
tioned services and try them out themselves.

II.9 Conclusion

This chapter has introduced you to Machine Learning. Now, you know that Machine Learning
is a technique of training machines to perform the activities a human brain can do, albeit bit
faster and better than an average human-being. Today we have seen that the machines can beat
human champions in games such as Chess, AlphaGO, which are considered very complex. You
have seen that machines can be trained to perform human activities in several areas and can aid
humans in living better lives. [24]

Page 48

Chapter III

Deep Learning on Graphs

Page 49

CHAPTER III. DEEP LEARNING ON GRAPHS

III.1 INTRODUCTION

Over the past decade, deep learning has become the "crown jewel" of artificial intelligence and
machine learning as it has shown superior performance in several areas. The expressive power
of deep learning for extracting complex patterns from underlying data is well recognized. On
the other hand, graphs are ubiquitous in the real world, representing objects and their relation-
ships in diverse domains. Graphs are also known to have complex structures that can contain
rich base values. As a result, how deep learning methods are used to analyze graph data has
attracted much research interest. This problem is not trivial because there are many challenges
in applying traditional deep learning architectures to graphs

• Irregular structures of graphs.

• Heterogeneity and diversity of graphs.

• Large-scale graphs.

• Incorporating interdisciplinary knowledge.

In this chapter, we try reviewing deep learning methods on graphs. Specifically, as shown in
Figure (III.1), we divide the existing methods into five categories based on their model archi-
tectures and training strategies.

We summarize some of the main characteristics of these categories in Table III.1 based on
the high-level distinctions.[25]

Figure III.1: A categorization of deep learning methods on graphs. [25]

Category Basic Assumptions/Aims Main Functions

Graph convolutional networks Common local and global structural patterns of graphs Definitions of states for nodes or graphs

Graph convolutional networks Common local and global structural patterns of graphs Graph convolution and readout operations

Graph autoencoders Low-rank structures of graphs Unsupervised node representation learning

Graph reinforcement learning Feedbacks and constraints of graph tasks Graph-based actions and rewards

Graph adversarial methods
The generalization ability and robustness

of graph-based models
Graph adversarial trainings and attacks

Table III.1: Main Distinctions among Deep Learning Methods on Graphs. [25]

In the following sections, we provide a comprehensive and detailed overview of these meth-
ods, mainly by following their development history and the various ways these methods solve
the challenges posed by graphs. We also analyze the differences between these models and
delve into how to composite different architectures. Finally, we briefly outline the applications
of these models, introduce several open libraries.

Page 50

CHAPTER III. DEEP LEARNING ON GRAPHS

III.2 NOTATIONS AND PRELIMINARIES

G = (V,E) A graph
N,M The number of nodes and edges

V = (v1, . . . ,vN) The set of nodes
FV , FE The attributes/features of nodes and edges

A The adjacency matrix
D(i, i)=∑ j A(i, j) The diagonal degree matrix

Q∧QT = L The Laplacian matrix
L = D−A The eigendecomposition of L

P = D−1−A The transition matrix
Nk(i),N(i) The k-step and 1-step neighbors of vi

Hl The hidden representation in the lth layer
fl The dimensionality of Hl

ρ(.) Some non-linear activation function
X1�X2 The element-wise multiplication

Θ Learnable parameters
s The sample size

Table III.2: A Table for Commonly Used Notations. [25]

III.3 GRAPH RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) is a facto standard in modeling sequential data. In this
section, we review Graph RNNs which can capture recursive and sequential patterns of graphs.
Graph RNNs can be broadly divided into two categories: node-level RNNs and graph-level
RNNs. The main distinction lies in whether the patterns lie at the node-level and are modeled
by node states, or at the graph-level and are modeled by a common graph state.

III.3.1 Node-level RNNs

Node-level RNNs for graphs, which are also referred to as graph neural networks (GNNs)3, can
be dated back to the” pre-deep learning” era. The idea behind a GNN is simple: to encode graph
structural information, each node is represented by a low-dimensional state vector. Motivated
by recursive neural networks.

For graph-focused tasks, the authors suggested adding a special node with unique attributes to
represent the entire graph. To learn the model parameters, semi-supervised method is adopted.

GNN plays two important roles. In retrospect, a GNN unifies some of the early methods used

Page 51

CHAPTER III. DEEP LEARNING ON GRAPHS

for processing graph data, such as recursive neural networks and Markov chains. Looking to-
ward the future, the general idea underlying GNNs has profound inspirations. In fact, GNNs and
GCNs can be unified into some common frameworks, and a GNN is equivalent to a GCN that
uses identical layers to reach stable states. Although they are conceptually important, GNNs
have several drawbacks.

Intuitively, a “contraction map” requires that the distance between any two points can only “con-
tract”, which severely limits the modeling ability. Second, because many iterations are needed
to reach a stable state between gradient descend steps, GNNs are computationally expensive.
Because of these drawbacks and perhaps a lack of computational power and lack of research
interests, GNNs did not become a focus of general research.

A notable improvement to GNNs is gated graph sequence neural networks (GGS-NNs) with the
modifications. Most importantly, the authors replaced the recursive definition with a GRU, thus
removing the “contraction map” requirement and supporting modern optimization techniques.

The authors proposed using several networks operating in sequence to produce sequence out-
puts and showed that their method could be applied to sequence-based tasks such as program
verification. SSE took a similar approach However, instead of using a GRU in the calculation,
SSE adopted stochastic fixed point gradient descent to accelerate the training process. This
scheme basically alternates between calculating steady node states using local neighborhoods
and optimizing the model parameters, with both calculations in stochastic mini-batches.

Category Method Recursive/sequential patterns of graphs Time Complexity Other Improvements

Node-level

GNN

A recursive definition of node states

O(MI f) -

GGS-NNs O(MT) Sequence outputs

SSE O(davgS) -

Graph-level

You et al. Generate nodes and edges in an autoregressive manner O(N2) -

DGNN Capture the time dynamics of the formation of nodes and edges O(Mdavg) -

RMGCNN Recursively reconstruct the graph O(M)orO(MN) GCN layers

Dynamic GCN Gather node representations in different time slices O(Mt) GCN layers

Table III.3: The Main Characteristics of Graph Recurrent Neural Network (Graph RNNs). [25]

III.3.2 Graph-level RNNs

In this subsection, we review how to apply RNNs to capture graph-level patterns, e.g., temporal
patterns of dynamic graphs or sequential patterns at different levels of graph granularities. In
graph-level RNNs, instead of applying one RNN to each node to learn the node states, a single
RNN is applied to the entire graph to encode the graph states.

You et al. applied Graph RNNs to the graph generation problem. they adopted two RNNs:
one to generate new nodes and the other to generate edges for the newly added node in an
autoregressive manner. They showed that such hierarchical RNN architectures learn more ef-
fectively from input graphs than do the traditional rule-based graph generative models while
having a reasonable time complexity.

To capture the temporal information of dynamic graphs, dynamic graph neural network
(DGNN) was proposed that used a time-aware LSTM to learn node representations. When a
new edge is established, DGNN used the LSTM to update the representation of the two inter-
acting nodes as well as their immediate neighbors, i.e., considering the one-step propagation

Page 52

CHAPTER III. DEEP LEARNING ON GRAPHS

effect. The authors showed that the time-aware LSTM could model the establishing orders and
time intervals of edge formations well, which in turn benefited a range of graph applications.

III.4 GRAPH CONVOLUTIONAL NETWORKS

Graph convolutional networks (GCNs) are the hottest topic in graph-based deep learning. mod-
ern GCNs learn the common local and global structural patterns of graphs through designed
convolution and readout functions. Because most GCNs can be trained with task-specific loss
via backpropagation, we focus on the adopted architectures. We first discuss the convolution
operations, then move to the readout operations and some other improvements. We summarize
the main characteristics of GCNs surveyed in this paper in Table 3.(III.4)

III.4.1 Convolution Operations

Graph convolutions can be divided into two groups: spectral convolutions, which perform con-
volution by transforming node representations into the spectral domain using the graph Fourier
transform or its extensions, and spatial convolutions, which perform convolution by consider-
ing node neighborhoods. Note that these two groups can overlap, for example, when using a
polynomial spectral kernel.

III.4.1.1 Spectral Methods

Convolution is the most fundamental operation in CNNs. However, the standard convolution
operation used for images or text cannot be directly applied to graphs because graphs lack a
grid structure. Bruna et al first introduced convolution for graph data from the spectral domain
using the graph Laplacian matrix L , which plays a similar role as the Fourier basis in signal
processing .

III.4.1.2 The Efficiency Aspect

The recursive definition. From this aspect, a GNN can be regarded as a GCN with a large
number of identical layers to reach stable states , i.e., a GNN uses a fixed function with fixed
parameters to iteratively update the node hidden states until reaching an equilibrium, while a
GCN has a preset number of layers and each layer contains different parameters.

III.4.1.3 The Aspect of Multiple Graphs

A parallel series of works has focuses on generalizing graph convolutions to multiple graphs of
arbitrary sizes. Neural FPs proposed a spatial method that also used the first-order neighbors.

Page 53

CHAPTER III. DEEP LEARNING ON GRAPHS

Method Type Convolution Readout T.C. M.G. Other Characteristics
Bruna et al. Spectral Interpolation Kernel Hierarchical Clustering + FC O(N3) No -

Henaff et al. Spectral Interpolation Kernel Hierarchical Clustering + FC O(N3) No Constructing the Graph

ChebNet Spectral/Spatial Polynomial Hierarchical Clustering O(M) Yes -

Kipf&Welling Spectral/Spatial First-order - O(M) - -

CayletNet Spectral Polynomial - O(M) No -

GWNN Spectral Wavelet Transform - O(M) No -

Neural FPs Spectral First-order Sum O(M) Yes -

PATCHY-SAN Spectral Polynomial + Order Order + Pooling O(MlogN) Yes An Order for Neighbors

LGCN Spectral First-order + Order - O(M) Yes An Order for Neighbors

SortPooling Spectral First-order Order + Pooling O(M) Yes An Order for Nodes

DCNN Spectral Polynomial Diffusion Mean O(N2) Yes Edge Features

DGCN Spectral First-order + Diffusion - O(N2) - -

MPNNs Spectral First-order Set2set O(M) Yes General Framework

GraphSAGE Spectral First-order + Sampling - O(MlogN) - General Framework

MoNet Spectral First-order Hierarchical Clustering O(M) Yes General Framework

GNs Spectral First-order Whole Graph Representation O(M) Yes General Framework

Kearnes et al Spectral Weave module Fuzzy Histogram O(N2) Yes Edge Features

DiffPool Spectral Various Hierarchical Clustering O(N2) Yes Differentiable Pooling

GAT Spectral First-order - O(M) Yes Attention

GaAN Spectral First-order - O(NsL) Yes Attention

HAN Spectral Meta-path Neighbors - O(Mφ) Yes Attention

CLN Spectral First-order - O(M) - -

PPNP Spectral First-order - O(M) - Teleportation Connection

JK-Nets Spectral Various - O(M) Yes Jumping Connection

ECC Spectral First-order Hierarchical Clustering O(M) Yes Edge Features

R-GCNs Spectral First-order - O(M) - Edge Features

LGNN Spectral First-order + LINE graph - O(M) - Edge Features

PinSage Spectral Random Walk - O(NsL) - Neighborhood Sampling

StochasticGCN Spectral First-order + Sampling - O(NsL) - Neighborhood Sampling

FastGCN Spectral First-order + Sampling - O(NsL) Yes Layer-wise Sampling

Adapt Spectral First-order + Sampling - O(NsL) Yes Layer-wise Sampling

Li et al. Spectral First-order - O(M) - Theoretical analysis

SGC Spectral Polynomial - O(M) Yes Theoretical analysis

GFNN Spectral Polynomial - O(M) Yes Theoretical analysis

GIN Spectral First-order Sum + MLP O(M) Yes Theoretical analysis

DGI Spectral First-order - O(M) Yes Unsupervised training

Table III.4: A Comparison among Different Graph Convolutional Networks (GCNs). T.C. = Time
Complexity, M.G. = Multiple Graphs. [25]

III.4.1.4 Frameworks

MPNNs were proposed as a unified framework for the graph convolution operation in the spatial
domain using message-passing functions.

III.4.2 Readout Operations

Using graph convolution operations, useful node features can be learned to solve many node-
focused tasks. However, to tackle graph-focused tasks, node information needs to be aggregated
to form a graph-level representation. Based on a regular and local neighborhood, standard
CNNs conduct multiple stride convolutions or poolings to gradually reduce the resolution. Since
graphs lack a grid structure, these existing methods cannot be used directly.

Page 54

CHAPTER III. DEEP LEARNING ON GRAPHS

III.4.2.1 Statistics

The most basic order-invariant operations involve simple statistics such as summation, averag-
ing or max-pooling.

III.4.2.2 Hierarchical Clustering

graphs are known to exhibit rich hierarchical structures, which can be explored by hierarchical
clustering methods. However, hierarchical clustering methods are all independent of the graph
convolutions. To solve that problem, DiffPool proposed a differentiable hierarchical cluster-
ing algorithm jointly trained with the graph convolutions. Specifically, the authors proposed
learning a soft cluster assignment matrix in each layer using the hidden representations.

III.4.2.3 Imposing Orders and Others

PATCHY-SAN and SortPooling took the idea of imposing a node order and then resorted to
standard 1-D pooling as in CNNs.Whether these methods can preserve order invariance depends
on how the order is imposed, which is another research field. However, whether imposing a
node order is a natural choice for graphs and if so, what the best node orders are constituting
still on-going research topics.

Heuristics. In GNNs, the authors suggested adding a special node connected to all nodes to
represent the entire graph. Similarly, GNs proposed to directly learn the representation of the
entire graph by receiving messages from all nodes and edges.

III.4.2.4 Summary

In short, statistics such as averaging or summation are the simplest readout operations, while
hierarchical clustering algorithms jointly trained with graph convolutions are more advanced
but are also more sophisticated. Other methods such as adding a pseudo node or imposing a
node order have also been investigated.[25]

III.4.3 Improvements and Discussions

Many techniques have been introduced to further improve GCNs. Note that some of these
methods are general and could be applied to other deep learning models on graphs as well.

III.4.3.1 Attention Mechanism

In the aforementioned GCNs, the node neighborhoods are aggregated with equal or pre-defined
weights. However, the influences of neighbors can vary greatly; thus, they should be learned
during training rather than being predetermined. Inspired by the attention mechanism, graph
attention network (GAT) introduces the attention mechanism into GCNs by modifying the con-
volution operation.

III.4.3.2 Residual and Jumping Connections

Many researches have observed that the most suitable depth for the existing GCNs is often very
limited. This problem is potentially due to the practical difficulties involved in training deep
GCNs or the over-smoothing problem, i.e., all nodes in deeper layers have the same represen-
tation. To remedy this problem, residual connections similar to ResNet can be added to GCNs.
For example, Kipf and Welling added residual connections. [25]

Page 55

CHAPTER III. DEEP LEARNING ON GRAPHS

III.4.3.3 Edge Features

The aforementioned GCNs mostly focus on utilizing node features and graph structures.but
there is another important source of information: the edge features.

III.4.3.4 Sampling Methods

One critical bottleneck when training GCNs for large-scale graphs is efficiency. many GCNs
follow a neighborhood aggregation scheme. However, because many real graphs follow a
power-law distribution, the number of neighbors can expand extremely quickly. To deal with
this problem, two types of sampling methods have been proposed: neighborhood samplings and
layer-wise samplings, as illustrated in Figure (III.2).[25]

Figure III.2: Different node sampling methods, in which the blue nodes indicate samples from one batch
and the arrows indicate the sampling directions. The red nodes in (B) represent historical samples. [25]

Page 56

CHAPTER III. DEEP LEARNING ON GRAPHS

III.4.3.5 Inductive Setting

Another important aspect of GCNs is that whether they can be applied to an inductive setting,
i.e., training on a set of nodes orgraphs and testing on another unseen set of nodes or graphs,
the existing inductive GCNs is suitable only for graphs with explicit features. [25]

Page 57

CHAPTER III. DEEP LEARNING ON GRAPHS

III.5 GRAPH AUTOENCODERS

The autoencoder (AE) and its variations have been widely applied in unsupervised learning
tasks and are suitable for learning node representations for graphs. The implicit assumption is
that graphs have an inherent, potentially nonlinear low-rank structure.

III.5.1 Autoencoders

The use of AEs for graphs originated from sparse autoencoder (SAE). The basic idea is that, by
regarding the adjacency matrix or its variations as the raw features of nodes, AEs can be lever-
aged as a dimensionality reduction technique to learn lowdimensional node representations.

Method Type Objective T.C. Node Features Other Characteristics

SAE AE L2-Reconstruction O(M) No -

SDNE AE L2-Reconstruction + Laplacian Eigenmaps O(M) No -

DNGR AE L2-Reconstruction O(N2) No -

GC-MC AE L2-Reconstruction O(M) Yes GCN Encoder

DRNE AE Recursive Reconstruction O(Ns) No LSTM Encoder

G2G AE KL + Ranking O(M) Yes Nodes as distributions

VGAE VAE Pairwise Probability of Reconstruction O(N2) Yes GCN Encoder

DVNE VAE Wasserstein + Ranking O(M) No Nodes as distributions

ARGA/ARVGA AE/VAE L2-Reconstruction + GAN O(N2) Yes GCN Encoder

NetRA AE Recursive Reconstruction + Laplacian Eigenmaps + GAN O(M) No LSTM Encoder

Table III.5: A Comparison among Different Graph Autoencoders (GAEs). T.C. = Time Complexity. [25]

III.5.2 Variational Autoencoders

Different from the aforementioned autoencoders, variational autoencoders (VAEs) are another
type of deep learning method that combines dimensionality reduction with generative models.
Its potential benefits include tolerating noise and learning smooth representations. VAEs were
first introduced to graph data in VGAE.[25]

III.5.3 Improvements and Discussions

Several improvements have also been proposed for GAEs.

III.5.3.1 Adversarial Training

An adversarial training scheme was incorporated into GAEs as an additional regularization term
in ARGA. Specifically, the encoder of GAEs was used as the generator while the discriminator
aimed to distinguish whether a latent representation came from the generator or from a prior
distribution. In this way, the autoencoder was forced to match the prior distribution as a regu-
larization.

III.5.3.2 Inductive Learning

Similar to GCNs, GAEs can be applied to the inductive learning setting. This can be achieved
by using a GCN as the encoder, or by directly learning a mapping function. Because the edge

Page 58

CHAPTER III. DEEP LEARNING ON GRAPHS

information is utilized only when learning the parameters, the model can also be applied to
nodes unseen. These works also show that although GCNs and GAEs are based on different
architectures, it is possible to use them jointly ” future direction”.

III.5.3.3 Similarity Measures

In GAEs, many similarity measures have been adopted, for example, L2-reconstruction loss,
Laplacian eigenmaps, and the ranking loss for graph AEs, and KL divergence and Wasserstein
distance for graph VAEs. Although these similarity measures are based on different motivations,
how to choose an appropriate similarity measure for a given task and model architecture remains
unstudied. [25]

III.6 GRAPH REINFORCEMENT LEARNING

One aspect of deep learning not yet discussed is reinforcement learning (RL), which has been
shown to be effective in AI tasks such as playing games. RL is known to be good at learning
from feedbacks, especially when dealing with non-differentiable objectives and constraints. In
this section, we review Graph RL methods. Their main characteristics are summarized in Table
(III.6).

Method Task Actions Rewards Time Complexity

GCPN Graph generation Link prediction GAN + domain knowledge O(MN)

MolGAN Graph generation Generate the whole graph GAN + domain knowledge O(N2)

GTPN Chemical reaction prediction Predict node pairs and new bonds Prediction results O(N2)

GAM Graph classification Predict graph labels and select the next node Classification results O(davgsT)

DeepPath Knowledge graph reasoning Predict the next node of the reasoning path Reasoning results + diversity O(davgsT + s2T)

MINERVA Knowledge graph reasoning Predict the next node of the reasoning path Reasoning results O(davgsT)

Table III.6: The Main Characteristics of Graph Reinforcement Learning. [25]

III.7 GRAPH ADVERSARIAL METHODS

Adversarial methods such as GANs and adversarial attacks have drawn increasing attention in
the machine learning community in recent years. The main characteristics of graph adversarial
methods are summarized in Table (III.7).

Category Method Adversarial Methods Time Complexity Node Features

Adversarial

Training

ARGA/ARVGA Regularization for GAEs O(N2) Yes

NetRA Regularization for GAEs O(M) No

GCPN Rewards for Graph RL O(MN) Yes

MolGAN Rewards for Graph RL O(N2) Yes

GraphGAN Generate negative samples (node pairs) O(MN) No

ANE Regularization for network embedding O(N) No

GraphSGAN Enhancing semi-supervised learning on graphs O(N2) Yes

NetGAN Generate graphs via random walks O(M) No

Adversarial

Attack

Nettack Targeted attacks of graph structures and node attributes O(Nd2
0) Yes

Dai et al. Targeted attacks of graph structures O(M) No

Zugner and Gunnemann Non-targeted attacks of graph structures O(N2) Yes

Table III.7: The Main Characteristics of Graph Adversarial Methods. [25]

Page 59

CHAPTER III. DEEP LEARNING ON GRAPHS

III.7.1 Adversarial Training

The basic idea behind a GAN is to build two linked models: a discriminator and a generator.
The goal of the generator is to “fool” the discriminator by generating fake data, while the dis-
criminator aims to distinguish whether a sample comes from real data or is generated by the
generator. Subsequently, both models benefit from each other by joint training using a minimax
game. Adversarial training has been shown to be effective in generative models and enhancing
the generalization ability of discriminative models.[25]

III.7.2 Adversarial Attacks

Adversarial attacks are another class of adversarial methods intended to deliberately “fool” the
targeted methods by adding smallperturbations to data. Studying adversarial attacks can deepen
our understanding of the existing models and inspire more robust architectures.

III.8 DISCUSSIONS AND CONCLUSION

Thus far, we have reviewed the different graph-based deep learning architectures as well as their
similarities and differences. Next, we briefly discuss their applications, implementations, and
future directions before summarizing this chapter.

III.8.1 Applications

In addition to standard graph inference tasks such as node or graph classification, graph-based
deep learning methods have also been applied to a wide range of disciplines, including modeling
social influence, recommendation, chemistry and biology, physics, disease and drug prediction
gene expression, natural language processing (NLP), computer vision, traffic forecasting, pro-
gram induction, solving graph-based NP problems, and multi-agent AI systems.[25]

III.8.2 Implementations

Recently, several open libraries have been made available for developing deep learning mod-
els on graphs. These libraries are listed in Table (III.8). We also collected a list of source
code (mostly from their original authors) for the studies discussed in this chapter. These open
implementations make it easy to learn, compare, and improve different methods. Some imple-
mentations also address the problem of distributed computing, which we do not discuss in this
chapter. [25]

Name URL Language/Framework Key Characteristics

PyTorch Geometric https://github.com/rusty1s/pytorch_geometric PyTorch
Improved efficiency, unified operations,

comprehensive existing methods

Deep Graph Library https://github.com/dmlc/dgl PyTorch Improved efficiency, unified operations, scalability

AliGraph https://github.com/alibaba/aligraph Unknown Distributed environment, scalability, in-house algorithms

Euler https://github.com/alibaba/euler C++/TensorFlow Distributed environment, scalability

Table III.8: Libraries of Deep Learning on Graphs. [25]

Page 60

CHAPTER III. DEEP LEARNING ON GRAPHS

III.8.3 Future Directions

There are several ongoing or future research directions worth noting as well:

• New models for unstudied graph structures.

• Compositionality of existing models.

• Dynamics graphs.

• Interpretability and robustness.

III.9 Conclusion

The above informations shows that deep learning on graphs is a promising and fast-developing
research field that both offers exciting opportunities and presents many challenges. Studying
deep learning on graphs constitutes a critical building block in modeling relational data, and
it is an important step towards a future with better machine learning and artificial intelligence
techniques. [25]

Page 61

Chapter IV

Implementation and Evaluation

Page 62

CHAPTER IV. IMPLEMENTATION AND EVALUATION

IV.1 INTRODUCTION

Given the ubiquity of network structures in real-world data, graph generative models have been
studied extensively as a means of simulating graphs with different properties. modern ap-
proaches to graph generation based on deep learning, including graph convolutional networks ”
kipth and welling, Li et Al, LGCN ’‘, are flexible enough to learn multiple different properties
of an input graph simultaneously. The graphs generated by these architectures may be used for
downstream learning tasks such as data augmentation, recommendation, and link prediction.

In this chapter we made a special view on a graph convolutional networks approaches and we
tried to implement three methods codes and compare their result , we tell about the tools that
we need to execute the codes.

IV.2 Implementation framework

IV.2.1 Python

IV.2.1.1 What is Python?

Python is a popular programming language. It was created by Guido van Rossum, and released
in 1991.[26]

IV.2.1.2 It is used for

• Web development (server-side).

• Software development.

• Mathematics.

• System scripting.

IV.2.1.3 What can Python do

• Python can be used on a server to create web applications.

• Python can be used alongside software to create workflows.

• Python can connect to database systems. It can also read and modify files.

• Python can be used to handle big data and perform complex mathematics.

• Python can be used for rapid prototyping, or for production-ready software development.[26]

IV.2.1.4 Why Python ?

• Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

• Python has a simple syntax similar to the English language.

• Python has syntax that allows developers to write programs with fewer lines than some
other programming languages.

• Python runs on an interpreter system, meaning that code can be executed as soon as it is
written. This means that prototyping can be very quick.

• Python can be treated in a procedural way, an object-orientated way or a functional
way.[26]

Page 63

CHAPTER IV. IMPLEMENTATION AND EVALUATION

IV.2.1.5 Good to know

• The most recent major version of Python is Python 3, which we shall be using in this
work. However, Python 2, although not being updated with anything other than security
updates, is still quite popular.

• In this tutorial Python will be written in a text editor. It is possible to write Python in
an Integrated Development Environment, such as Thonny, Pycharm, Netbeans or Eclipse
which are particularly useful when managing larger collections of Python files.

IV.2.1.6 Python Syntax compared to other programming languages

• Python was designed for readability, and has some similarities to the English language
with influence from mathematics.

• Python uses new lines to complete a command, as opposed to other programming lan-
guages which often use semicolons or parentheses.

• Python relies on indentation, using whitespace, to define scope; such as the scope of
loops, functions and classes. Other programming languages often use curly-brackets for
this purpose.[26]

IV.2.2 DATASETS

IV.2.2.1 CoRA Dataset

The experimental results have been carried out on a subset of the original CORA Research
Paper Classification Dataset by Andrew McCallum of University of Massachussets Amherst.
The CORA dataset is composed by a set of entities and their relations to allow experimenting
with machine learning approaches which can cope with relations. Entities are authors and
scientific papers. CoRA assigns to each paper a set of categories (multi-label classification task),
selected from a taxonomy of classes. The goal of our experiments is to predict the categories
assigned to each paper[27].

IV.2.2.2 citeseer dataset

CiteSeer for Document Classification The CiteSeer dataset consists of 3312 scientific pub-
lications classified into one of six classes. The citation network consists of 4732 links.
Each publication in the dataset is described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from the dictionary. The dictionary consists
of 3703 unique words. The README file in the dataset provides more details.

CiteSeer for Entity Resolution The CiteSeer dataset contains 1504 machine learning docu-
ments with 2892 author references to 165 author entities. For this dataset, the only at-
tribute information available is author name. The full last name is always given, and in
some cases the author’s full first name and middle name are given and other times only
the initials are given.[28]

IV.2.3 GOOGLE COLAB

IV.2.3.1 Colab definition

Colab is the on-demand availability of computer system resources, especially data storage and
computing power, without direct active management by the user. The term is generally used to
describe data centers available to many users over the Internet often have functions distributed

Page 64

CHAPTER IV. IMPLEMENTATION AND EVALUATION

over multiple locations from central servers. If the connection to the user is relatively close, it
may be designated an edge server.

Colab relies on sharing of resources to achieve coherence and economies of scale.

Advocates of Colab note that Colab function allows companies to avoid or minimize up-front
IT infrastructure costs. Proponents also claim that Colab allows enterprises to get their ap-
plications up and running faster, with improved manageability and less maintenance, and that
it enables IT teams to more rapidly adjust resources to meet fluctuating and unpredictable de-
mand, providing the burst computing capability: high computing power at certain periods of
peak demand[29].

IV.2.3.2 How does colab work?

Rather than owning their own computing infrastructure or data centers, companies can rent ac-
cess to anything from applications to storage from a cloud service provider.

One benefit of using google Colab services is that firms can avoid the upfront cost and com-
plexity of owning and maintaining their own IT infrastructure, and instead simply pay for what
they use, when they use it.

In turn, providers of Colab services can benefit from significant economies of scale by deliver-
ing the same services to a wide range of customers.

IV.2.3.3 What colab services are available?

Google Colab services cover a vast range of options now, from the basics of storage, network-
ing, and processing power through to natural language processing and artificial intelligence as
well as standard office applications. Pretty much any service that doesn’t require you to be
physically close to the computer hardware that you are using can now be delivered via the cloud
[29].

IV.3 IMPLEMENTATION

IV.3.1 Semi-Supervised Classification with GCNs ”Li et al” method

In this part, we demystify the GCN model for semisupervised learning. In particular, we show
that the graph convolution of the GCN model is simply a special form of Laplacian smoothing,
which mixes the features of a vertex and its nearby neighbors. The smoothing operation makes
the features of vertices in the same cluster similar, thus greatly easing the classification task,
which is the key reason why GCNs work so well. However, it also brings potential concerns of
over-smoothing. If a GCN is deep with many convolutional layers, the output features may be
oversmoothed and vertices from different clusters may become indistinguishable. The mixing
happens quickly on small datasets with only a few convolutional layers. Also, adding more
layers to a GCN will make it much more difficult to train. However, a shallow GCN model
such as the two-layer GCN used in (Kipf and Welling 2017)[30] has its own limits. Besides
that, it requires many additional labels for validation, it also suffers from the localized nature
of the convolutional filter. When only few labels are given, a shallow GCN cannot effectively
propagate the labels to the entire data graph. the performance of GCNs drops quickly as the
training size shrinks, even for the one with 500 additional labels for validation. To overcome the
limits and realize the full potentials of the GCN model, we propose a co-training approach and
a self-training approach to train GCNs. By co-training a GCN with a random walk model, the
latter could complement the former in exploring global graph topology. By self-training a GCN,

Page 65

CHAPTER IV. IMPLEMENTATION AND EVALUATION

we can exploit its feature extraction capability to overcome its localized nature. Combining both
the co-training and self-training approaches can substantially improve the GCN model for semi-
supervised learning with very few labels, and exempt it from requiring additional labeled data
for validation. our method outperforms GCNs by a large margin.

IV.3.1.1 dataset used

Dataset Nodes Edges Classes Features
CiteSeer 3327 4732 6 3703
Cora 2708 5429 7 1433

Table IV.1: Dataset statistics. [32]

IV.3.1.2 Results Analysis

The classification results are summarized in this Tables, where the highest accuracy in each
column is highlighted in bold and the top 3 are underlined. Our methods are displayed at the
bottom half of each table. We can see that the performance of Co-Training is closely related to
the performance of LP. If the data has strong manifold structure, such as PubMed, Co-Training
performs the best. In contrast, Self-Training is the worst on PubMed, as it does not utilize
the graph structure. But Self-Training does well on CiteSeer where Co-Training is overall the
worst. Intersection performs better when the training size is relatively large, because it filters
out many labels. Union performs best in many cases since it adds more diverse labels to the
training set [32].

Cora
Label Rate 0.5% 1% 2% 3% 4% 5%
LP 56.4 62.3 65.4 67.5 69.0 70.2
Cheby 38.0 52.0 62.4 70.8 74.1 77.6
GCN-V 42.6 56.9 67.8 74.9 77.6 79.3
GCN+V 50.9 62.3 72.2 76.5 78.4 79.7
Co-training 56.6 66.4 73.5 75.9 78.9 80.8
Self-training 53.7 66.1 73.8 77.2 79.4 80.0
Union 58.5 69.9 75.9 78.5 80.4 81.7
Intersection 49.7 65.0 72.9 77.1 79.4 80.2

Table IV.2: Classification Accuracy On Cora. [32]

Page 66

CHAPTER IV. IMPLEMENTATION AND EVALUATION

CiteSeer
Label Rate 0.5% 1% 2% 3% 4% 5%
LP 34.8 40.2 43.6 45.3 46.4 47.3
Cheby 31.7 42.8 59.9 66.2 68.3 69.3
GCN-V 33.4 46.5 62.6 66.9 68.4 69.5
GCN+V 43.6 55.3 64.9 67.5 68.7 69.6
Co-training 47.3 55.7 62.1 62.5 64.5 65.5
Self-training 43.3 58.1 68.2 69.8 70.4 71.0
Union 46.3 59.1 66.7 66.7 67.6 68.2
Intersection 42.9 59.1 68.6 70.1 70.8 71.2

Table IV.3: Classification Accuracy on CiteSeer. [25]

IV.3.1.3 Comparison with other methods

We compare the GCNs methods with other state-of-the-art methods in Table IV.4 . The ex-
perimental setup is the same except that for every dataset, we sample 20 labels for each class,
which corresponds to the total labeling rate of 3.6% on CiteSeer, 5.1% on Cora. The results of
other baselines are copied from (Kipf and Welling 2017)[30] . Our methods perform similarly
as GCNs and outperform other baselines significantly. Although we did not directly compare
with other baselines, we can see from Table IV.2, IV.3 that our methods with much fewer labels
already outperform many baselines. For example, our method Union on Cora Table (IV.3)
with 2% labeling rate (54 labels) beats all other baselines with 140 labels Table (IV.4).[32]

Page 67

CHAPTER IV. IMPLEMENTATION AND EVALUATION

Method CiteSeer Cora

ManiReg 60.1 59.5

SemiEmb 59.6 59.0

LP 45.3 68.0

DeepWalk 43.2 67.2

ICA 69.1 75.1

Planetoid 64.7 75.7

GCN-V 68.1 80.0

GCN+V 68.9 80.3

Co-training 64.0 79.6

Self-training 67.8 80.2

Union 65.7 80.5

Intersection 69.9 79.8

Table IV.4: Accuracy under 20 Labels per Class. [32]

IV.3.2 Graph convolutional network: kipth and willing method

We present a scalable approach for semi-supervised learning on graph-structured data that is
based on an efficient variant of convolutional neural networks which operate directly on graphs.
We motivate the choice of our convolutional architecture via a localized first-order approxima-
tion of spectral graph convolutions. Our model scales linearly in the number of graph edges
and learns hidden layer representations that encode both local graph structure and features of
nodes. In a number of experiments on citation networks and on a knowledge graph dataset we
demonstrate that our approach outperforms related methods by a significant margin.[30]

IV.3.2.1 SEMI-SUPERVISED NODE CLASSIFICATION

we can relax certain assumptions typically made in graph-based semi-supervised learning by
conditioning our model f(X;A) both on the data X and on the adjacency matrix A of the un-
derlying graph structure. We expect this setting to be especially powerful in scenarios where
the adjacency matrix contains information not present in the data X, such as citation links be-
tween documents in a citation network or relations in a knowledge graph. The overall model, a
multi-layer GCN for semi-supervised learning

Page 68

CHAPTER IV. IMPLEMENTATION AND EVALUATION

IV.3.2.2 GRAPH-BASED SEMI-SUPERVISED LEARNING

A large number of approaches for semi-supervised learning using graph representations have
been proposed in recent years, most of which fall into two broad categories: methods that use
some form of explicit graph Laplacian regularization and graph embedding-based approaches.
Prominent examples for graph Laplacian regularization include label propagation , manifold
regularization and deep semi-supervised embedding.
Recently, attention has shifted to models that learn graph embeddings with methods inspired by
the skip-gram model. DeepWalk learns embeddings via the prediction of the local neighborhood
of nodes, sampled from random walks on the graph. LINE and node2vec extend DeepWalk
with more sophisticated random walk or breadth-first search schemes. For all these methods,
however, a multistep pipeline including random walk generation and semi-supervised training
is required where each step has to be optimized separately. Planetoid alleviates this by injecting
label information in the process of learning embeddings.

IV.3.2.3 EXPERIMENTS

We test our model in a number of experiments: semi-supervised document classification in
citation networks, semi-supervised entity classification in a bipartite graph extracted from a
knowledge graph, an evaluation of various graph propagation models and a run-time analysis
on random graphs.

IV.3.2.4 DATASETS

We closely follow the experimental setup in Yang et al. (2016). Dataset statistics are summa-
rized in Table IV.5 . In the citation network datasets—Citeseer, Cora and Pubmed (Sen et al.,
2008)—nodes are documents and edges are citation links. Label rate denotes the number of
labeled nodes that are used for training divided by the total number of nodes in each dataset.
NELL (Carlson et al., 2010; Yang et al., 2016) is a bipartite graph dataset extracted from a
knowledge graph with 55,864 relation nodes and 9,891 entity nodes.

Dataset Type Nodes Edges Classes Features Label rate
Citeseer Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001

Table IV.5: Dataset statistics, as reported in Yang et al. (2016). [32]

IV.3.2.5 RESULTS

SEMI-SUPERVISED NODE CLASSIFICATION:Results are summarized in Table IV.6 . Re-
ported numbers denote classification accuracy in percent. For ICA, we report the mean accuracy
of 100 runs with random node orderings. Results for all other baseline methods are taken from
the Planetoid paper (Yang et al., 2016). Planetoid* denotes the best model for the respective
dataset out of the variants presented in their paper.

IV.3.2.6 Results Analysis

This approach introduced a novel approach for semi-supervised classification on graph-structured
data. Our GCN model uses an efficient layer-wise propagation rule that is based on a first-
order approximation of spectral convolutions on graphs. Experiments on a number of network

Page 69

CHAPTER IV. IMPLEMENTATION AND EVALUATION

Method Citeseer Cora Pubmed NELL
ManiReg 60.1 59.5 70.7 21.8
SemiEmb 59.6 59.0 71.1 26.7
LP 45.3 68.0 63.0 26.5
DeepWalk 43.2 67.2 65.3 58.1
ICA 69.1 75.1 73.9 23.1
Planetoid* 64.7 (26s) 75.7 (13s) 77.2 (25s) 61.9 (185s)
GCN (this paper) 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)
GCN (rand. splits) 67.9 ± 0.5 80.1 ± 0.5 78.9 ± 0.7 58.4 ± 1.7

Table IV.6: Summary of results in terms of classification accuracy (in percent).

datasets suggest that the proposed GCN model is capable of encoding both graph structure and
node features in a way useful for semi-supervised classification. In this setting, our model
outperforms several recently proposed methods by a significant margin, while being computa-
tionally efficient.

IV.3.3 graph convolutional network : ” LGCN method ”

IV.3.3.1 introduction

Deep learning methods are becoming increasingly powerful in solving various challenging ar-
tificial intelligence tasks. Among these deep learning methods, convolutional neural networks
(CNNs) have demonstrated promising performance in many image-related applications, such
as image classification, semantic segmentation, and object detection. A variety of CNN models
have been proposed to continuously set the performance records. In addition to images, CNNs
have also been successfully applied to natural language processing tasks such as neural machine
translation. One common characteristic behind these tasks is that the data can be represented by
grid-like structures. This enables the use of convolutional operations in the form of the same lo-
cal filters scanning every position on the input. Unlike traditional hand-crafted filters, the local
filters used in convolutional layers are trainable. The networks can automatically decide what
kind of features to extract by learning the weights in these trainable filters, thereby avoiding
hand-crafted feature extraction[31].

IV.3.3.2 METHODS

In this section, we introduce the learnable graph convolutional layer (LGCL) and the sub-graph
training strategy on generic graph data. Based on these developments, we propose the large-
scale learnable graph convolutional networks (LGCNs).

IV.3.3.3 EXPERIMENTAL STUDIES

In this section,we evaluate this proposed large-scale learnable graph convolutional networks
(LGCNs) on node classification tasks under both transductive and inductive learning settings.
In addition to comparisons with prior state-of-the-art models, some performance studies are
performed to investigate how to choose hyperparameters. Experiments are also conducted to
analyze the training strategy based on the proposed sub-graph selection algorithm. Experimen-
tal results show that LGCNs yield improved performance, and the sub-graph training is much
more efficient than whole-graph training. this code is publicly available.

Page 70

CHAPTER IV. IMPLEMENTATION AND EVALUATION

Dataset #Nodes #Features #Classes #Training Nodes #Validation Nodes #Test Nodes Degree Setting

Cora 2708 1433 7 140 500 1000 4 Transductive

Citeseer 3327 3703 6 120 500 1000 5 Transductive

Pubmed 19717 500 3 60 500 1000 6 Transductive

PPI 56944 50 121 44906 (20 graphs) 6514 (2 graphs) 5524 (2 graphs) 31 Inductive

Table IV.7: Summary of datasets used in our experiments [30, 31]. The Cora, Citeseer, and Pubmed
datasets are used for transductive learning experiments, while the PPI dataset is for inductive learning
experiments. The degree attribute listed is the average node degree of each dataset, which helps the
selection of the hyper-parameter k in LGCLs. [31]

Experimental Setup
We describe the experimental setup under both transductive and inductive learning settings.
Transduction Learning. In transductive learning tasks, we employ the proposed LGCN models
.
Since transductive learning datasets employ high-dimensional bag-ofword representations as
feature vectors of nodes, the inputs go through a graph embedding layer to reduce the dimen-
sion. Here, we use a GCN layer as the graph embedding layer. The dimension of the embedding
output is 32. Then we apply LGCLs, each of which uses k = 8 and produces 8-component fea-
ture vectors. For the Cora, Citeseer, and Pubmed, we stack 2, 1, and 1 LGCLs, respectively. We
use concatenation in skip connections. Finally, a fully-connected layer is used as a classifier to
make predictions. Before the fullyconnected layer, we perform a simple sum to aggregate fea-
ture vectors of adjacent nodes. Dropout is applied on both input feature vectors and adjacency
matrices in each layer with rates of 0.16 and 0.999, respectively. All LGCN models in trans-
ductive learning tasks use the sub-graph training strategy. The sub-graph size is set to 2,000.
Inductive Learning. For inductive learning, the same LGCN model is used except for some
hyper-parameters. For the graph embedding layer, the dimension of output feature vectors is
128. We stack two LGCLs with k = 64. We also employ the subgraph training strategy, with
sub-graph initial node size equal to 500 and 200. Dropout with a rate of 0.9 is applied in each
layer. For both transductive and inductive learning LGCN models, the following configura-
tions are shared. For all layers, only the identity activation function is used, which means no
nonlinearity is involved in the networks. In order to avoid over-fitting, the L2 regularization
with λ = 0.0005 is applied. For training, the Adam optimizer with a learning rate of 0.1 is
used.Weights in LGCNs are initialized by the Glorot initialization. We employ the early stop-
ping strategy based on the validation accuracy and train 1,000 epochs at most.

IV.3.3.4 Results Analysis

The experimental results are summarized in Tables IV.8 and IV.9 for transductive and learning
settings, respectively.

Transduction Learning For transductive learning experiments, we report node classification
accuracies . Table IV.8 provides the comparisons with other graph models. According to
the results, our LGCN models achieve better performance over the current state-of-the-art
GCNs by a margin of 1.8%, 2.7%, and 0.6% on the Cora, Citeseer, and Pubmed datasets,

Page 71

CHAPTER IV. IMPLEMENTATION AND EVALUATION

Cora Citeseer Pubmed

GCN
Nodes 2708 3327 19717
Accuracy 81.5% 70.3% 79.0%
Time 7s 4s 38s

LGCNwhole

Nodes 2708 3327 19717
Accuracy 83.8 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%
Time 58s 30s 1080s

LGCNsub

Nodes 644 442 354
Accuracy 83.3 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%
Time 14s 3.6s 2.6s

Table IV.8: Results of transductive learning experiments for comparing the sub-graph training and whole-
graph training strategies on the Cora, Citeseer, and Pubmed datasets. For comparison, we conduct exper-
iments on LGCNs that employ the same whole-graph training strategy as GCNs, denoted as LGCNwhole
. [31]

respectively.

Inductive Learning For inductive learning experiments, we report micro-averaged F1 scores .
From table IV.9, we can observe that our LGCN model outperforms GraphSAGE-LSTM
by a margin of 16%. Without observing the structure of test graphs in training, the LGCN
model still achieves good generalization. The results above show that the proposed LGCN
models on generic graphs consistently yield new state-of-the-art performance in node clas-
sification tasks on different datasets. These results demonstrate the effectiveness of apply-
ing regular convolutional operations on transformed graph data. In addition, the propose
transformation approach through the k-largest node selection is shown to be effective.

IV.3.3.5 abstract

In this work, we tested the learnable graph convolutional layer(LGCL), which transforms generic
graphs to data of grid-like structures and enables the use of regular convolutional operations.
The transformation is conducted through a novel k-largest node selection process, which uses
the ranking between node feature values. Based on our LGCL, we build deeper networks,
known as learnable graph convolutional networks (LGCNs), for node classification tasks on
graphs. Experimental results show that the proposed LGCN models yield consistently better
performance than prior methods under both transductive and inductive learning settings. The
LGCN models achieve new state-of-the-art results on four different datasets, demonstrating the
effectiveness of LGCLs.

Page 72

CHAPTER IV. IMPLEMENTATION AND EVALUATION

Models PPI
GraphSAGE-GCN [9] 0.500
GraphSAGE-mean [9] 0.598
GraphSAGE-pool [9] 0.600
GraphSAGE-LSTM [9] 0.612
LGCNsub(Ours) 0.772 ± 0.002

Table IV.9: Results of transductive learning experiments for comparing the LGCNsub and GCN layers
on the Cora, Citeseer, and Pubmed datasets. Using the network architecture of LGCNsub , we replace
LGCLs by GCN layers, resulting in the LGCNsub -GCN model. [31]

Models Cora Citeseer Pubmed
LGCNsub-GCN 82.2 ± 0.5% 71.1 ± 0.5% 79.0 ± 0.2%
LGCNsub(Ours) 83.3 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%

Table IV.10: Results of transductive learning experiments for comparing the LGCNsub and GCN layers
on the Cora, Citeseer, and Pubmed datasets. Using the network architecture of LGCNsub , we replace
LGCLs by GCN layers, resulting in the LGCNsub-GCN model. [31]

IV.4 CONCLUSION

Thus far, we have reviewed the different approaches to deep learning structures ” graph convo-
lutional network ” along with their similarities and differences after applying three of them to
the same dataset. We investigated the results and showed them. With all this, work is still under-
way in this area to reach more efficient deep learning methods, by using the compare between
the result we can know all the deffrences between and can find the most accuracy methode in
every single dataset that can give the most result is effecient.

Page 73

General Conclusion

Graphs are common data structures used to represent / model real-world systems and the data

associated with it. Graph Mining is one of the arms of Data mining in which voluminous com-

plex data are represented in the form of graphs and mining is done to infer knowledge from

them. This work was focused in the particular problem of frequent subgraph mining.

Frequent sub graph mining or for short (FSM) is extensively used for graph classification, build-

ing indices and graph clustering purposes, the purpose of an FSM algorithm is to discover sub-

graphs that appears frequently in a set of graphs or a single large graph.

The deep learning is a big topic that can deal correctly and smart with graph ” frequent subgraph

mining ” that have a lot of categories and methods, in our work we covered the convolutional

neural network and a three methods from the most efficient, then we compare our result between

it each other, finally we can say that This field is subject to development, and its methods can

be applied in all areas of life to improve results and make them more accurate.

Page VII

Refrences

[1] Aridhi S. Distributed Frequent Subgraph Mining in the Cloud. [Engineering Doctoral
School of Clermont Ferrand]; 2013.

[2] Müller DE. Lesematerial Big Data Analytics. openHPI [Internet]. Available from:
https://open.hpi.de/courses/bigdata2017/items/4TO9c3oDe1AhP9tecEUDp5
cited 2018 May 25.

[3] Washio T, Motoda H. State of the art of graph-based data mining. ACM SIGKDD Explor
Newsl [Internet]. [2003;5(1):59]. Available from:
http://portal.acm.org/citation.cfm?doid=959242.959249
July 2003.

[4] Davide Mottin, Konstantina Lazaridou Graph Mining: Introduction. [GRAPH MINING
WS 2016]. Available from:
https://hpi.de/fileadmin/user_upload/fachgebiete/mueller/courses/graphmining/
GraphMining-01-Introduction.pdf ,University of Potsdam.

[5] Graph Types and Applications.[Internet].
Available from:
https://www.geeksforgeeks.org/graph-types-and-applications/
Last Updated: 16-11-2018.

[6] Chuntao Jiang FC and MZ. A Survey of Frequent Subgraph Mining Algorithms. Knowl Eng
Rev. 2004;00(January):1–24.

[7] Gutman I, Polansky OE. Mathematical concepts in organic chemistry. Springer Science &
Business Media; 2012. 28 p.

[8] Aridhi S. Distributed Frequent Subgraph Mining in the Cloud.. Engineering Doctoral
School of Clermont Ferrand;2013.

[9] B Rajinikanth. Data Structures.
http://www.btechsmartclass.com/data_structures/tree-terminology.html
(August 2020)

[10] Ullmann JR. An algorithm for subgraph isomorphism. J ACM. 23(1):31–42. (1976)

[11] Schmidt DC, Druffel LE. A fast backtracking algorithm to test directed graphs for isomor-
phism using distance matrices. J ACM. 1976;23(3):433–45

[12] McKay BD, others. Practical graph isomorphism. 1981;45–87.

[13] Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph matching in pattern recog-
nition. Int J pattern Recognit Artif Intell. 2004;18(03):265–98.

Page VIII

REFRENCES

[14] Miyazaki T. The complexity of McKays canonical labeling algorithm. In:Groups and Com-
putation II . 1997. p. 239–56

[15] Cordella LP, Foggia P, Sansone C, Vento M. Subgraph transformations for the inexact
matching of attributed relational graphs. In: Graph based representations in pattern recog-
nition. Springer; 1998. p. 43–52.

[16] Cordella L Pietro, Foggia P, Sansone C, Vento M. An improved algorithm for match-
ing large graphs. In: 3rd IAPR-TC15 workshop on graph-based representations in pattern
recognition. 2001. p. 149–59.

[17] Mrzic, Aida and Meysman, Pieter and Bittremieux, Wout and Moris, Pieter and Cule,
Boris and Goethals, Bart and Laukens, Kris Grasping frequent subgraph mining for bioin-
formatics applications. (German) [On the electrodynamics of moving bodies]. Annalen der
Physik,2018

[18] Krish. graph-mining.
https://www.slideshare.net/Krish_ver2/55-graph-mining
(May 7, 2015)

[19] Darren Rolfe, Vince. Graph Mining and Social Network Analysis Data Mining.
In:11.06.14.

[20] Difference Between Fp growth and Apriori Algorithm.
http://www.lastnightstudy.com/Show?id=123/Difference-Between-Fp-growth-
and-Apriori-Algorithm (August,2020)

[21] Ramraj, T and Prabhakar, R. Frequent subgraph mining algorithms-a survey. 2015;
47:197–204.

[22] Tutorials Point. Artificial Intelligence. Retrieved from
https://www.dcpehvpm.org/EContent/BCA/BCA-III/artificial_intelligence_
tutorial.pdf
(2015).

[23] Tutorials Point. (2015). Machine Learning. Retrieved from
https://www.tutorialspoint.com/machine_learning/machine_learning_tutorial.pdf
(2019)

[24] STEFFORA MUTSCHLER Difference Between Fp growth and Apriori Algorithm.
https://semiengineering.com/using-cnns-to-speed-up-systems/ . AUGUST
10TH, 2017.

[25] Zhang, Ziwei and Cui, Peng and Zhu, Wenwu. Deep learning on graphs: A survey. 2020.

[26] Python Tutorial. Python Introduction.
Retrieved from
https://www.w3schools.com/python/python_intro.asp
(2020).

[27] Claudio Saccà. Experiments on CoRA Dataset.
Retrieved from
https://sites.google.com/site/semanticbasedregularization/home/software/
experiments_on_cora Jun 23, 2012, 10:06 AM.

Page IX

REFRENCES

[28] University of California. Datasets.
Retrieved from
https://linqs.soe.ucsc.edu/data
UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064(2020).

[29] Africa’s Premium Managed. Cloud Computing.
Retrieved from
https://addicnet.com/cloud-computing-2/
December 9th, 2019.

[30] Kipf, Thomas N and Welling, Max. Semi-supervised classification with graph convolu-
tional networks.
arXiv preprint arXiv:1609.02907,(2016).

[31] Gao, Hongyang and Wang, Zhengyang and Ji, Shuiwang. Large-scale learnable graph
convolutional networks.
(2018):1416–1424.

[32] Li, Qimai and Han, Zhichao and Wu, Xiao-Ming. Deeper insights into graph convolu-
tional networks for semi-supervised learning.
arXiv preprint arXiv:1801.07606,(2018).

[33] Ahmed, Abdelkader Ralem and Boubekeur, Abdellatif. Submitted to the computer science
departement faculty of science and TECHNOLOGY-KHEMIS MILIANA UNIVERSITY in
partial fulfillement of the requirement for the degree of master in computer science.
(2018).

[34] Joget. A Quick Introduction to Artificial Intelligence, Machine Learning, Deep Learning
and TensorFlow.
(March 1st 2019).

Page X

List of Abbreviations

AI Artificial Intellegance

FSM Frequent Subgraph Mining

KDD Knowledge Discovery in Databases

BFS Breadth First Search

DFS Depth First Search

DCP Downward Closure Property

ANN Artificial Neural Network

HPC High Performance Computing

IDE Integrated Development Envirenement

GCN Graph Convolutional Network

CNN Convolutional Neural Network

GNN Graph Convolutional Network

DP Deep Learning

DRL Deep Reinforcement Learning

KNN K-Nearest Neighbour

CPU Central Processing Unit

ML Machine Learning

GGS-NNs Gated Graph Sequence Neural Networks

DGNN Dynamic Graph Neural Network

LSTM Long Short Term Memory

MPNNs Message Passing Neural Network

GAN Graph Attention Network

AE Auto Encoder

NLD Natural Language Processing

LGCL Learnable Graph Convolutional Layer

Page XI

Appendices

Page XII

In this part we want to show some of etaps of excuting our code of implementation and the
result of every single method .
STEP 1:take a copy of the codes from the github site.

Figure .1: Take a copy code from github for kipth and welling method of GCNN.

Figure .2: Take a copy code from github for li et al method of GCNN.

Page XIII

Figure .3: Take a copy code from github for LGCN method of GCNN.

STEP 2: Import the codes in the colab in a new notebook.

Figure .4: Import LGCN method code.

Figure .5: Import Kipth and Welling method code .

Page XIV

Figure .6: Import Li et Al method code.

STEP 3: follow the instruction in the GitHub site and read the informations , the find a
solution of every single error for make a run.

Figure .7: LGCN run result.

Page XV

Figure .8: Kipth and welling run result .

Figure .9: li et al run result.

Conclusion

This is the way we execute our methods for get a real result and make a comparison.

Page XVI

	Acknowledgements
	List of Figures
	List of Tables
	General Introduction
	Graph Theory and Frequent Subgraph Mining
	data mining
	Graph mining
	What can we do with graph mining?
	What is involved in graph mining?
	Frequent subgraph mining (FSM)
	Prerequisite

	Types and propertiefs of graphs
	Finite Graphs
	Infinite Graph
	Trivial Graph
	Simple Graph
	Multi Graph
	Null Graph
	Complete Graph
	Pseudo Graph
	Regular Graph
	Bipartite Graph
	Labelled Graph
	Digraph Graph
	Subgraph
	Types of Subgraph
	Connected or Disconnected Graph
	Cyclic Graph
	Isomorphisme graph
	Automorphism
	Latice
	Density
	Trees

	Tree Terminology
	Overview of FSM
	Graph isomorphism detection
	Search strategy
	FSM algorithmic approaches
	Apriori Property
	Apriori based approach
	algorithme AprioriGraph
	Pattern Growth Approach
	algorithme PatternGrowthGraph

	Comparison between

	Other Applications
	Conclusion

	General Concept for Deep Learning
	Introduction
	Artificial Intelligence
	What is Artificial Intelligence?
	Philosophy of AI
	Goals of AI
	What Contributes to AI?
	Programming Without and With AI
	What is AI Technique?
	Applications of AI
	History of AI
	What is Intelligence?
	Types of Intelligence
	What is Intelligence Composed of?
	Difference between Human and Machine Intelligence
	Real Life Applications of Research Areas
	Task Classificationof AI

	Machine learning
	Statistical Techniques

	Machine Learning – Categories of Machine Learning
	Supervised Learning
	Regression
	Classification

	Unsupervised Learning
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning

	Machine Learning – Supervised Learning
	Algorithms for Supervised Learning
	k-Nearest Neighbours
	Decision Trees
	Naive Bayes
	Logistic Regression
	Machine Learning – Scikit-learn Algorithm

	Machine Learning – Unsupervised Learning
	Algorithms for Unsupervised Learning
	k-means clustering
	Cluster Identification
	Machine Learning – Artificial Neural Networks
	ANN Architectures

	Machine Learning – Deep Learning
	Applications
	Untapped Opportunities of Deep Learning
	What is Required for Achieving More Using Deep Learning?
	Deep Learning -Disadvantages
	Black Box approach
	Duration of Development
	Amount of Data
	Computationally Expensive
	Mathematical Notation
	Probability Theory
	Visualization

	Machine Learning – Implementing Machine Learning
	Language Choice
	IDEs
	Platforms

	Conclusion

	Deep Learning on Graphs
	INTRODUCTION
	NOTATIONS AND PRELIMINARIES
	GRAPH RECURRENT NEURAL NETWORKS
	Node-level RNNs
	Graph-level RNNs

	GRAPH CONVOLUTIONAL NETWORKS
	Convolution Operations
	Spectral Methods
	The Efficiency Aspect
	The Aspect of Multiple Graphs
	Frameworks

	Readout Operations
	Statistics
	Hierarchical Clustering
	Imposing Orders and Others
	Summary

	Improvements and Discussions
	Attention Mechanism
	Residual and Jumping Connections
	Edge Features
	Sampling Methods
	Inductive Setting

	GRAPH AUTOENCODERS
	Autoencoders
	Variational Autoencoders
	Improvements and Discussions
	Adversarial Training
	Inductive Learning
	Similarity Measures

	GRAPH REINFORCEMENT LEARNING
	GRAPH ADVERSARIAL METHODS
	Adversarial Training
	Adversarial Attacks

	DISCUSSIONS AND CONCLUSION
	Applications
	Implementations
	Future Directions

	Conclusion

	Implementation and Evaluation
	INTRODUCTION
	Implementation framework
	Python
	What is Python?
	It is used for
	What can Python do
	Why Python ?
	Good to know
	Python Syntax compared to other programming languages

	DATASETS
	CoRA Dataset
	citeseer dataset

	GOOGLE COLAB
	Colab definition
	How does colab work?
	What colab services are available?

	 IMPLEMENTATION
	Semi-Supervised Classification with GCNs ''Li et al'' method
	dataset used
	Results Analysis
	Comparison with other methods

	Graph convolutional network: kipth and willing method
	SEMI-SUPERVISED NODE CLASSIFICATION
	GRAPH-BASED SEMI-SUPERVISED LEARNING
	EXPERIMENTS
	DATASETS
	RESULTS
	 Results Analysis

	graph convolutional network : '' LGCN method ''
	 introduction
	METHODS
	EXPERIMENTAL STUDIES
	Results Analysis
	 abstract

	CONCLUSION

	General Conclusion
	Refrences
	List of Abbreviations
	Appendices

