République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieure et de la Recherche Scientifique Université Djilali Bounaama de Khemis-Miliana

Faculté des Sciences de la Nature et de la vie et des Sciences

De la Terre et Univers

Département : Sciences de la Terre

Filière : Géotechnique

Mémoire présenté pour l'obtention d'un diplôme de Master en Géotechnique

Thème

CORRELATIONS DES DONNEES IN SITU SUR 45KM DE TRACE D'UNE LIGNE THT AFLOU –LAGHOUAT

Présenté par :

Mr. LAIDI NOUR ELISLAM Mr. MALEK FAROUK

Devant le jury composé de :

Mr. Gharbi B Mr. Meziani B Mme. Filali M Mme. Belhadj F.Z

Mme Badaoui A

Président Examinateur Examinatrice Encadreur

Co-encadreur

Promotion : 2018-2019

Remerciements

Nous remercions le bon DIEU de nous avoir donné le courage et la volonté d'accomplir ce travail.

Nos remerciements vont particulièrement à nos parents pour leur Soutien et leurs encouragements.

Nous tenons à remercier notre promotrice Mme. Belhadj Fatima Zohra et Copromotrice Mme Badaoui Azhar pour leur incroyable dévotion à parfaire notre travail et à nous aider par leurs orientations et conseils pour l'élaboration de cette étude.

Nos remerciements également l'ensemble du corps enseignant de l'université DJILALI BOUNAAMA en générale et plus particulièrement ceux du département de science de la terre pour avoir contribuer à notre formation. Nous adressons nos remerciements à tous les collègues de notre promotion. Nous remercions tout le groupe Du Laboratoire Travaux Publics De L'Est (LTPE) Bordj Bou Arreridj et DRS-Sétif.

Dédicace

En premier apport, je dédie ce travail à mes parents ;

A mon père, qu'il trouve ici le résultat de longues années de sacrifices et de privations pour m'aider à avancer dans la vie.

A ma mère, qui a œuvré pour ma réussite, de par son amour, son soutien, tous les sacrifices consentis et ses précieux conseils, pour toute son assistance et sa présence dans ma vie.

En deuxième apport, je le dédié à:

- ✓ Mes frères et ma sœur et à toute ma famille.
- ✓ Tous mes collègues de promotion géotechnique et à tous mes amis sans exception
- ✓ Mon cher ami et mon binôme
- ✓ Et à toute Personne ayant contribué à ce travail de près ou de loin

LAIDI .NOUR ELISLAM

Dédicace

En premier apport, je dédie ce travail à mes parents ;

A mon père, qu'il trouve ici le résultat de longues années de sacrifices et de privations pour m'aider à avancer dans la vie.

A ma mère, qui a œuvré pour ma réussite, de par son amour, son soutien, tous les sacrifices consentis et ses précieux conseils, pour toute son assistance et sa présence dans ma vie,

En deuxième apport, je le dédie à :

- ✓ Mes frères et mes sœurs
- ✓ Ma chérie A.B
- ✓ Tous mes collègues de promotion géotechnique et tous mes amis sans exception, surtout Youssef et Zakaria
- ✓ Mon cher ami et mon binôme
- ✓ Et à toute Personne ayant contribué à ce travail de près ou de loin

MALEK FAROUK

Résumé

Avant la réalisation de tout projet de construction, il est nécessaire de connaître les caractéristiques et la classification des sols dans une région, de déterminer ses propriétés physiques et mécaniques et de connaitre ses compositions chimiques à travers des analyses et essais au laboratoire et sur site.

Sur la base des résultats et investigations géotechniques, nous pouvons classer les sols d'une région, et calculer par la suite les fondations superficielles et profondes, estimer les tassements, calculer les ouvrages de soutènements ...etc

Abstract:

Before any construction project is carried out, it is necessary to know the characteristics and the classification of soils in a region, to determine its physical and mechanical properties and to know its chemical compositions through analyzes and tests in the laboratory and on site. On the basis of the results and geotechnical investigations, we can classify the soils of a region, and calculate thereafter the superficial and deep foundations, estimate the settlements, calculate the structures of supports ... etc

ملخص:

قبل تنفيذ أي مشروع بناء ، من الضروري معرفة خصائص وتصنيف التربة في المنطقة وتحديد خواصها الفيزيائية والميكانيكية ومعرفة تركيباتها الكيميائية من خلال التحليلات والاختبارات في المختبر وفي الموقع. على أساس النتائج والتحقيقات الجيوتقنية ، يمكننا تصنيف التربة في المنطقة ، وحساب الأسس السطحية والعميقة بعد ذلك ، وتقدير الهبوط، وحساب هياكل الدعم ... إلخ

Table des matières

Liste des figures :	a
LISTE DES TABLEAUX	b
Abréviations	c
INTRODUCTION GENERALE	1
CHAPITRE I: Localisation du site	3
1-Introduction	4
3- Implantations des sondages sur la carte d'état majeur	5
4 - Etude géologique locale	7
5- Climatologie	13
6-la sismicité	13
CHAPITRE II : Analyse et interprétation des résultats	15
1. Introduction :	16
2. Déroulement de l'étude (Le programme d'investigation) :	16
2.1 Les coordonnées des Sondages de reconnaissance géologique :	16
3. Les essais in situ :	16
3.1. Les sondages carottés : NF P 94 – 202	16
3.2. Reconnaissance géophysique : ASTM G57-95a	19
3.3. Essais préssiométrique	21
4. Les essais au laboratoire :	39
5- Conclusion :	45
CHAPITRE III : Corrélation entre les essais in situ et les essais au laboratoire	46
✓ Introduction :	47
2-Domaines d'utilisation des corrélations :	47
3-Rappel sur les statistiques :	47
3.1. Echantillon statistique :	48
3.2 Distribution :	48
3.3 Moyenne :	48
3.4 Variance :	48
3.5 L'écart type:	49
3.6 La covariance :	49

3.7 Corrélation :	49
3.8 Coefficient de corrélation linéaire :	49
4. Pratique corrélation sur les argiles d'Aflou :	50
4.1. Corrélation entre la cohésion et la pression limite (ple*) :	50
4.2. Corrélation entre la pression limite nette (ple*) et l'angle de frottement interne (φ) :	54
5. Utilisation de la corrélation pour la classification des sols :	57
5.1. Paramètres pressiometriques nécessaires et suffisants à la détermination de α	58
Conclusion Générale	74
Références bibliographiques	75

Liste des figures :

Figure 1 : Situation géographique de la région étudiée (secteur d'Aflou, Djebel Amour, Atlas
Saharien) Photo : Google Earth
Figure 2 : Implantations des sondages pressiometrique sur la carte d'état majeur (Mapinfo7.5_
Malek.F-Laidi.N).
Figure 03 : profil topographique d'implantation des sondages carottés sur Google earth pro
Figure 4 : principales structures de la zone d'étude Photo : Google earth
Figure 5 : Carte géologique de la région d'étude (Djebel Amour, près d'Aflou) (d'après la carte
géologique au 1/200.000 de Laghouat, feuille J-K 9-10)
Figure 6 : Colonne lithostratographique synthétique de la région d'étude (Djebel Amour)10
Figure 7: localisation des coupes de la figure 09 sur une photo satellite de la zone d'étude
(Photo : Google Earth)
Figure 8 : Localisation des coupes de la figure 9 sur la carte géologique de la région d'étude (Djebel
Amour, près d'Aflou) (d'après la carte géologique au 1/200.000 de Laghouat, feuille J-K 9-10). Pour
la légende de la carte
Figure 9 : Coupes sériées à travers les structures du Djebel Amour (zone d'étude) (Nouar, 1992)12
Figure 10 : Rosace directionnelle de la fracturation de la région de Djebel Amour (Nouar, 1992)13
Figure 11 : carte de classification des zones parasismiques en Algérie
(R.P.A/version 2003)
Figure 12: principe de l'essai
Figure 13: Facteur de portance pressiometrique pour les semelles carrées et filante
Figure14 : Relation pression-volume
Figure 15: classification des sols fins sur le diagramme de plasticité (l'Abaque de Casagrande)41
FIGURE 16 : Corrélation entre la pression limite nette et la cohésion non drainée
pour des valeurs de Ple* \geq 1 (Mpa)
FIGURE 17 : Corrélation entre la pression limite nette et l'angle de frottement interne
Figure 18 : Corrélation entre le rapport pressiométrique et le coefficient de compression oedométrique
Figure 19: Valeurs de α dans le diagramme Pressiorama. Tel qu'il peut apparaître dans les normes
<u>NF-P94-261 et NF-P94-262 (en projet).</u>

Figure 20: Les données préssionmetriques sur les pylône d'ancrages à 2.5 m de profondeur
Figure 21 : Les données préssionmetriques sur les pylônes d'ancrages à 4.5 m de profondeur
Figure 22 : Les données préssionmetriques sur les pylônes d'ancrages à 7.5 m de profondeur67
Figure 23: Les données préssionmetriques sur les sondages pressiometriques à 2 m de profondeur69
Figure 24 : Les données préssionmetriques sur les sondages pressiometriques à 4.5 m de profondeur.

LISTE DES TABLEAUX

Tableau 1 : récapitulatif des mesures de résistivité SEV
Tableau 2: kp Formule du coefficient de portance
Tableau 3 : Valeurs du coefficient α (d'après fascicule 62, titre V)25
Tableau 4 : valeurs des coefficients intervenant dans le calcul du tassement
Tableau 5 : Tableau des classes pour les sondages pressiometrique
Tableau 6 : différentes classes pour chaque type de fondation du pylône d'ancrage
Tableau 7 : les capacités portantes et tassement pour les pylônes d'ancrage
Tableau 8 : Les capacités portantes et tassement pour les sondages pressiometrique30-38
Tableau 9 : les teneurs en carbonates (CaCO3%) et en sulfates (SO4 %)
Tableau 10 : résultats de limites d'atterberg40-41
Tableau 11 : Teneur en eau, densités 41-42
Tableau 12 : Deux pierres poreuses assurant le drainage des deux faces de l'échantillon 42-43
Tableau 13 : Tableau récapitulatifs des résultats de cisaillement rectiligne. 43-44
Tableau 14 : Les résultats d'essai oedométrique
Tableau 15 : Comparatif des méthodes de calcul de la cohésion non drainée. $(0 \le Pl^* \le 0,3)$
Tableau 16 : Comparatif des méthodes de calcul de la cohésion non drainée $(0,3 \le Pl^* \le 1)52$
Tableau 17 : des résultats des pressions limites et cohésion non drainée. 53
Tableau 18 : résultats des pressions limites et angle de frottement interne
Tableau 19 : résultats de rapport pressiométrique (EmPle*) et le coefficient de compression
oedométrique (Cc)

Abréviations

^s r:		Degré de saturation ;
γ_h	$[kn/m^3]$	Poids volumique humide
γd	$[kn/m^3]$	Poids volumique sec
e		Indice des vides
e ₀		Indice des vides initial
Δe		Variation de l'indice des vides
G	[MPa]	Module de cisaillement
τ	[KPa]	Contrainte de cisaillement
τmax	[KPa]	Contrainte de cisaillement maximale
σ'	[MPa]	Contrainte effective
E		Module d'Young
E _M	[MPa]	Module pressiométrique Ménard
Eoed	[MPa]	Module oedométrique
E _{max} , G _{max}	[MPa]	Modules d'Young, de cisaillement maximal
Etan, Gtan	[MPa]	Modules d'Young, de cisaillement tangent
σ'1	[MPa]	Contrainte effective majeure
σ'3	[MPa]	Contrainte effective mineure
σ'p	[MPa]	Pression de préconsolidation
σ'c	[MPa]	Pression de consolidation
σ'ν	[MPa]	Contrainte verticale en place
σg	[MPa]	Pression de gonflement
υ		Coefficient de poisson
K_0		Coefficient des terres au repos
P'	[MPa]	Contrainte effective moyenne
q	[MPa]	Contrainte déviatorique
Vs	[m/s]	Vitesse de l'onde de cisaillement
Vp	[m/s]	Vitesse de l'onde de compression
ρ	[t/m ³]	Masse volumique
\mathbf{P}_0	[MPa]	Pression naturelle de terre au repos
P ₁ ;		Pression limite
P f		Pression de fluage
^p 1		Pression limite nette
Cu	[MPa]	Cohésion non drainée
a		Coefficient rhéologique du sol
α Cσ		Indice de gonflement
C ₅		Indice de compression
Pc		Coefficient de consolidation
In	%	Indice de plasticité
Rc	/0	Coefficient de compression de roche
WL	%	Limite de liquidité
W	%	Teneur en eau

r	Coefficient de corrélation
qi :	contrainte de rupture.
qo:	contrainte totale verticale des terres au niveau de la
	base de la fondation.
Кр:	facteur de portance pressiométrique.
$\sigma v \setminus o = qo$:	contrainte totale verticale des terres au niveau de la base de
	la fondation.
u :	pression interstitielle au niveau considéré
Sc :	tassement de consolidation qui concerne le sol à proximité
	de la fondation jusqu'à la profondeur B/2
Sd :	tassement déviatorique qui concerne le sol de B/2 à 8B
q':	contrainte effective moyenne appliquée au sol par
	la fondation
B0 :	largeur de référence égale à 0,60 m ;
$\lambda c et \lambda d$:	coefficients de forme, fonction du rapport L /B

INTRODUCTION GENERALE

INTRODUCTION GENERALE

Dans le cadre de la caractérisation géotechnique de la zone Aflou (Laghouat), la réalisation de la ligne électrique HAUTE TENSION 220KV CIMENTERIE EL BEIDA POSTE AFLOU 2 dont le tracé s'étend sur quarante Cinque kilomètres traversant les hauts plateaux, wilaya de LAGOUAT.

Notre étude se charge de la compagne des essais de reconnaissances Géotechniques et géophysiques sur l'ensemble du tracé.

Le but pratique de Cette étude géotechnique est de permettre l'adaptation spécifique de l'ouvrage afin de limiter les risques « naturels » induits, il consiste à avertir le maître d'ouvrage et les constructeurs de la nature et des comportements du site afin qu'ils puissent définir et justifier les solutions techniques qu'ils devront concevoir, adopter et mettre en œuvre pour réaliser leur aménagement et/ou leur ouvrage en toute sécurité et à moindre coût.

L'étude géotechnique permet aussi d'identifier et réduire les risques géologiques du site, d'identifier les contraintes géotechniques susceptibles d'avoir une incidence sur l'ouvrage, la pérennité et les conditions d'exécution du projet,

Le travail est réparti en trois chapitres à savoir

- ✓ Le premier chapitre comporte la localisation et la géologie de la zone étudiée.
- ✓ Le deuxième chapitre comporte une interprétation des résultats obtenus et classification des sols de la région.
- ✓ Le troisième chapitre consacré à la corrélation entre les essais in-situ et les essais au laboratoire.
- ✓ La conclusion générale.

CHAPITRE I: Localisation du site

I.1-Introduction

Sur une superficie totale de 26732,93 Ha, la wilaya de Laghouat s'étale de l'Atlas Saharien (Monts de Djebel Amour) aux steppes Sahariennes, limitée par les wilayas de Djelfa à l'Est et Nord- Est, EL Bayad à l'Ouest, Tiaret au Nord-Ouest et Ghardaïa au sud.

La zone étudiée la région d'Aflou se situe à environ 350 km au Sud d'Alger Les Monts du Djebel Amour constituent la partie centrale de l'Atlas saharien, et sont limités au Sud-Ouest par les Monts des Ksour et au Nord-Est par les Monts des Oulad Naïl . L'aspect général de la région est celui de reliefs dénudés allongés suivant la direction SW-NE qui encadrent des vallées ou de vastes steppes planes couvertes d'un tapis végétal constitué surtout par l'armoise et l'alfa. L'altitude moyenne des vastes steppes est comprise entre 800 et 1200 mètres.

Les crêtes qui forment les reliefs montagneux s'élèvent de 150 à 400 mètres au-dessus des plaines environnantes et atteignent leur maximum d'altitude près d'Aflou (Dj. Guern-Arif : 1721 m ; Dj. Sidi-Okba : 1707 m ; Dj. Gourou : 1706 m ; Dj. Zlag : 1583 m) (**figure 1**).

Figure 1 : Situation géographique de la région étudiée (secteur d'Aflou, Djebel Amour, Atlas Saharien) Photo : Google Earth

CHAPITRE I

I.2- Implantations des sondages sur la carte d'état majeur

Figure 2 : Implantations des sondages pressiometrique sur la carte d'état majeur (Mapinfo7.5_ Malek.F-Laidi.N).

Figure 03 : profil topographique d'implantation des sondages carottés sur Google earth pro

I.3 - Etude géologique locale

La région d'étude appartient au Djebel Amour. Elle est située près d'Aflou et comprend les synclinaux d'Aflou-djebel Gourou et d'Ed-Dor séparé par l'anticlinal du djebel Zlag ou Zlakh. Un diapirisme important se développe au niveau de la fermeture périclinale sud du pli du djebel Zlag (diapir triasique d'Aïn-El-Harfi). L'anticlinal est à cœur jurassique où les séries les plus anciennes sont du Malm (Kimméridgien inférieur), tandis que les cœurs des synclinaux sont du Crétacé inférieur et même superieur dans le djebel sidi okba.

Figure 4 : principales structures de la zone d'étude Photo : Google earth

La carte géologique et la stratigraphie détaillée de la zone d'étude sont données respectivement dans les figures 5 et 6. Les séries stratigraphiques de la région vont du Trias qui affleure sous forme de Diapir (Diapir d'Ain El Harfi et au coeur de l'anticlinal du Dj. Zlag ou Zlakh) jusqu'au Tertiaire qui est représenté par de faibles formations continentales discordantes sur les terrains du Crétacé et du Jurassique. Les formations les plus anciennes (en position normale) qui affleurent dans la région sont celles du Kimmeridgien gréseux (J5b ou formation 4 dans la figure 9) qui se localisent au coeur de l'anticlinal du Dj. Zlag. La série se termine par les barres cabonatées massives du Turonien qui affleurent au Dj. Sidi Okba (figure 5).

Le Djebel Amour est formé par des plis orientés NE-SW. Sur une étendue plus vaste que notre secteur d'étude, trois zones anticlinales sont visibles du Nord au Sud : la zone du djebel

CHAPITRE I

Chebka, celle du djebel Zlakh et la structure du djebel Mimouna au Sud. Ces trois anticlinaux sont séparés par les synclinaux d'Aflou et d'Ed-dor.

Figure 5 : Carte géologique de la région d'étude (Djebel Amour, près d'Aflou) (d'après la carte géologique au 1/200.000 de Laghouat, feuille J-K 9-10).

CHAPITRE I

Localisation du site

Correspondances entre les différentes formations et les indices indiquées dans la colonne de la figure 5 et la carte de la figure 6.

Les anticlinaux sont constitués de matériels calcaires et gréseux du Jurassique moyen et supérieur (Oxfordien à Kimméridgien), tandis que les synclinaux sont occupés par les grès du Valanginien-Barremien.

Trois coupes géologiques détaillées de la région d'étude montrant les structures et leur stratigraphie sont représentées sur la figure 7. La localisation de ces coupes est donnée par la figure 8 et la figure 9.

Le djebel Zlakh qui fait partie de notre secteur d'étude est un anticlinal constitué par des couches du Jurassique supérieur allant d'un Kimméridgien basal gréseux (4) au Portlandien calcaire (8). C'est un anticlinal orienté N50° et le cœur de cette structure est affectée par une faille N40° ainsi que par des petites failles en échelon orientées N90°.

Figure 7: localisation des coupes de la figure 09 sur une photo satellite de la zone d'étude (Photo : Google Earth)

Figure 8 : Localisation des coupes de la figure 9 sur la carte géologique de la région d'étude (Djebel Amour, près d'Aflou) (d'après la carte géologique au 1/200.000 de Laghouat, feuille J-K 9-10). Pour la légende de la carte, voir figure 8.

1 : Trias ; 3 : Kimméridgien basal ; 4 : Kimméridgien gréseux ; 5 : Kimméridgien marnocalcaire ; 6 : Kimméridgien calcaire ; 7 : Kimméridgien terminal-Portlandien ; 8 : Portlandien-Berriasien ; 9 : Valanginien-Barremien.

Figure 9 : Coupes sériées à travers les structures du Djebel Amour (zone d'étude) (Nouar,

1992).

CHAPITRE I

La fracturation est importante dans le secteur où l'on note les trois grandes familles de failles citées précédemment : NE-SW qui sont associées aux anticlinaux, E-W et NW-SE.

L'étude réalisée par Nouar (1992) indique que la direction NE-SW parallèle aux grandes structures du secteur est la plus fréquente (N60-80° et N80-100°). Une direction N120-140° apparaît également avec une certaine fréquence (figure 10).

Figure 10 : Rosace directionnelle de la fracturation de la région de Djebel Amour (Nouar, 1992)

I.4- Climatologie

Notre région d'étude(Laghouat), le climat est de type continental au Nord-Ouest avec une pluviométrie variant de 300 à 400 mm, des chutes de neige et des gelées blanches. Dans la région des Hauts Plateaux, le climat est de type saharien et aride. La pluviométrie varie entre 150 mm au Centre et 50 mm au Sud. Les hivers sont caractérisés par des gelées blanches et les étés par une forte chaleur accompagnée de vents de sable.

Le climat de Aflou est dit "de steppe". Il y a peu de précipitations, quelque soit la période de l'année, à Aflou. La carte climatique de Köppen-Geiger y classe le climat comme étant de type BSk. Sur l'année, la température moyenne à Aflou est de 13.2 °C. Les précipitations annuelles moyennes sont de 326 mm.

I.5-la sismicité

De point de vue sismique, la région est classée ; dans une zone de sismicité faible (**zone I**) (avec une probabilité négligeable d'occurrence d'un séisme ; selon le document **RPA** version 2003.

Figure 11 : carte de classification des zones parasismiques en Algérie (R.P.A/version 2003).

CHAPITRE II : Analyse et interprétation des résultats

II.1.Introduction :

Un programme d'investigation a été établi, des essais au laboratoire sur des échantillons intacts ou remaniés prélevés lors de sondages ont permet de déterminer les caractéristiques physiques et mécaniques des sols.

D'autre part, des essais in situ ont été réalisés, tel que l'essai pressiométrique qui permet de déterminer la capacité portante des fondations superficielles et profondes et d'estimer le tassement des sols sous les fondations. Ces résultats sont interprétés dans ce chapitre.

II.2. Déroulement de l'étude (Le programme d'investigation) :

Le programme d'investigation établi est décrit ci-après

Une compagne d'essais géotechnique qui coïncide le long de l'ouvrage correspond à l'emplacement des pylônes de la ligne.

- Vingt-trois (23) sondages carottés de 10 m sur les ancrages de la ligne;
- Vingt-trois (23) sondages préssiometrique de 10 m sur les ancrages de la ligne
- Cent un (103) sondages préssiometrique de 5 m sur l'alignement de la ligne.
- Une série d'essais en laboratoire de type physique et mécanique et une analyse chimique du sol et des eaux.

II.2.1 Les coordonnées des Sondages de reconnaissance géologique :

Le périmètre d'étude est défini par le tracé de la ligne indiqué par des coordonnées géodésiques à l'issue d'une étude topographique, on s'intéresse dans le présent rapport à la région AFLOU wilaya de LAGOUAT.

II.3. Les essais in situ :

II.3.1. Les sondages carottés : NF P 94 – 202

Les sondages montrent la présence de sables fins à grossiers, d'argiles limoneuses et plastiques. La lithologie au droit de chaque ouvrage est comme suit :

➤ <u>SC1-A02 (</u>413931 ; 3776234)

- 0 à 0.2m : terre végétale argileuse.
- 0.2 à 10 m : grés compact de couleur jaunâtre.

SC1-A03 (413689 ; 3776025)

- 0 à 0.2m : terre végétale argileuse.
- 0.2 à 10 m : Grés très compactes.

SC1-A04 (413484 ; 3775938)

- 0 à 0.4m : terre végétale.
- 0.4 à 5.0m : Argile de couleur rouge.
- 5.0 à 10.0m : congloméré et grés.
 - SC1-A05 (413209 ; 3775955)

 \geq

- 0 à 0.4m : terre végétale.
- 0.4 à 6.0m : Grés compact de couleur Beige à jaunâtre.
- 6.0 à 10.0m : congloméré et grés.

<u>SC1-A06 (</u>412928 ; 3776232)

- 0 à 0.4m : terre végétale.
- 0.4 à 6.0m : Grés compact de couleur jaunâtre.
- 6.0 à 10.0m : congloméré et grés.

SC1-A07 (412790 ; 3776537)

- 0 à 0.4m : terre végétale argileuse brune.
- 1.4 à 7.0m : congloméré et grés.
- 7.0 à m 10.0m grés friables.

> <u>SC1-A08 (</u>412859 ; 3777053)

- 0 à 4.0m : terre végétale argileuse brune.
- 0.4 à 1.5m : grés friable.
- 1.5 à 2.5 m : grés consolidé.
- 2.5 à 10 m : grés friable.
 - > <u>SC1-A09 (</u>413627 ; 3777829)
- 0 à 2.0m : terre végétale argileuse à tendance marneuses.
- 2.0 à 3.0m : Marne verdâtre.
- 3.0 à 10.0m : schiste Argileuse.
 - > <u>SC1-A10 (</u>414917 ; 3779930)
- 0 à 1.0m : terre végétale argileuse rougeâtre.
- 1.0 à 2.0m : Argile marno-calcaire.
- 2.0 à 5.0m : Argile gypseuse brune foncé.
- 5.0 à 8,5m : Argile élastique rougeâtre.
- 8,5 à 10,0m : Argile à aspect schisteux compacte de couleur verdâtre.

> <u>SC1-A11 (</u>415513 ; 3781882)

- 0 à 4.5m : Encroutement calcaire de couleur blanchâtre.
- 4.5 à 10.0m : Grés de couleur beige.
 - > <u>SC1-A12 (</u>408340 ; 3800572)
- 0 à 2.0m : Sable moyen à grossier
- 2.0 à 5.0m : Argile consolidé avec concertation de calcaire
- 5.0 à 6.5m : Argile sablonneuse.
- 6.5 à 8,5m : Argile sablonneuse compacte.
- 8,5 à 10,0m : Sable gréseux avec fragment de calcaire.

- > <u>SC1-A13 (</u>408545 ; 3803988)
- 0 à 0.20m : sable moyen à grossier
- 0.20 à 1.2m : Argile brune peu compacte
- 1.2 à 5.0m : Argile rougeâtre compacte.
- 5 à 10,0m : argile calcaire compacte.

```
> <u>SC1-A14 (</u>412119 ; 3807595)
```

- 0 à 1.20m : sable moyen à grossier
- 1.20 à 5.0m : Argile calcaire compacte
- 5 à 10,0m : Argile rougeâtre compacte.

SC1-A15 (413571 ; 3809299)

- 0 à 0.20m : Terre végétale
- 0.20 à 2.0m : sables gréseux grossiers
- 2 à 10,0m : calcaire massif et congloméra.

> <u>SC1-A16 (</u>413705 ; 3809718)

- 0 à 0.40m : Terre végétale
- 0.40 à 10.00m : calcaire massif

SC1-A17 (413805 ; 3810313)

- 0 à 1.20m : Terre végétale
- 1.20 à 2.5m : Argile sablonneuse consolidée
- 2.5 à 5,0m : Tuf de couleur rougeâtre à jaunâtre.
- 5.0 à 10,0m : Argile.

SC1-Pylône 36 (415140 ; 3782853)

- 0 à 1.50m : Argile brune compacte
- 1.50 à 3.0m : Argile sableuse à tendance gypseuse
- 3.0 à 7,5m : Argile marneuse.
- 7,5 à 9 m : Argile jaunâtre.
- 9,0 à 10,0m : Argile marneuse.

> <u>SC1- Pylône 41 (</u>414619 ; 3784211)

- 0 à 0.30m : Terre de recouvrement
- 0.30 à 2.10m : tuff gréseux blanchâtre
- 2.10 à 10.0m : congloméré et grés.

> <u>SC1- Pylône 44 (</u>414427 ; 3784711)

- 0 à 2.00m : Dépôts de pente de natures divers (argile, bloc, calcaires)
- 2 à 5.00m : Argile schisteuse de couleur verdâtre.
- 5.00 à 10.5m : Argile verdâtre et banc marno-calcaire

SC1- Pylône 54 (413132 ; 3788086)

- 0 à 3.00m : Argile sableuse intercalé de passage de gypse
- 3.00 à 4.5m : Argile brune peu compacte
- 4,50 à 7,0m : Argile sableuse cailloutée
- 7 à 10,0m : Argile rougeâtre plastique.

SC1- Pylône 63 (411977 ; 3791097)

- 0 à 2.80m : Argile cailloutée
- 2.80 à 3.7m : Argile sableuse cailloutée
- 3 .7 à 5,0m : sable brun.
- 5 à 6,0m : Argile blanchâtre e.
- 6 à 8,0m : Argile brune foncée.
- 8 à 10,0m : Argile rougeâtre compacte.

SC1- Pylône 73 (410610 ; 3794658)

- 0 à 2.00m : sable brun
- 2.00 à 3.5m : Argile sableuse
- 3.5 à 5,0m : grés consolidé.
- 5 à 6,5m : grés friable
- 6.5 à 8,0m : Argile marneuse
- 8 à 10,0m : marne verdâtre.

> <u>SC1- Pylône 82 (</u>409388 ; 3797842)

- 0 à 2.00m : Argile gypseuse
- 2.00 à 3.5m : Argile brune
- 3.5 à 6,0m : Argile blanchâtre compacte.
- 6 à 10,0m : argile brune compacte

II.3.2. Reconnaissance géophysique : ASTM G57-95a

Les résultats mesurés sont enregistrés sur site correspondant aux valeurs lues des résistivités, pour chacune des stations en fonction des profondeurs d'investigation. La "British Standards Institution", dans son fascicule CP 1021, donne les indications suivantes relatives à la corrosivité des sols vis-à-vis des conduites enterrées constituées de matériau en fer ou en acier en fonction de la résistivité de ces sols :

$\rho < 10 \Omega.m$	corrosivité très sévère.
$10 < \rho < 50 \Omega.m$	corrosivité sévère.
$50 < \rho < 100 \Omega.m$	corrosivité modérée.
ρ >100 Ω .m	corrosivité faible à très faible.

	Résistivité à 5m	Résistivité à 2,5	
BORNE N°	(Ω.m)	(Ω.m)	Sol support
A 02	10,43	24,65	corrosivité sévère
A 03	6,54	11,00	corrosivité sévère
A 04	10,205	16,328	corrosivité sévère
A 05	10,205	24,963	corrosivité sévère
A 06	6,123	10,99	corrosivité sévère
A 07	166,577	237,698	corrosivité faible
A 08	70,336	87,92	corrosivité modérée
A 09			corrosivité très
	5,966	10,519	sévère
A 10	15,386	43,489	corrosivité sévère
A 11	140,358	312,43	corrosivité faible
A 12	33,755	110,999	corrosivité faible
A 13			corrosivité très
	5,024	9,577	sévère
A14	17,741	51,81	corrosivité sévère
A 15	39,878	88,391	corrosivité modérée
A 16	42,076	79,442	corrosivité modérée
A 17	26,69	47,414	corrosivité sévère
PYLONE 36	13,188	38,936	corrosivité sévère
PYLONE 41	74,418	123,402	corrosivité faible
PYLONE 44	25,277	169,874	corrosivité faible
PYLONE 54	10,205	55,892	corrosivité sévère
PYLONE 63	61,858	387,79	corrosivité faible
PYLONE 73	20,881	36,424	corrosivité sévère
PYLONE 82	8,321	20,567	corrosivité sévère

Tableau 1 : récapitulatif des mesures de résistivité SEV

Discussion des résultats:

On distingue à partir des résultats (**tableau 1**) d'après La "British Standards Institution", dans son fascicule CP 1021 ; que la corrosivité des sols est :

• Corrosivité très sévère : (A09 ; A13).

- Corrosivité sévère:(A02, A03 ; A04 ; A05 ; A06 ; A10 ; A14 ; A17 ; PYLONE 36 ; PYLONE 54 ; PYLONE 73 ; PYLONE 82).
- Corrosivité modérée (A08 ; A15 ; A16)
- Corrosivité faible :(A07 ; A11 ; A12 ; PYLONE 41 ; PYLONE 44 ; PYLONE 63)

II.3.3. Essais préssiométrique

II.3.3.1. Introduction

C'est Louis MENARD (1957) qui a repris et développé cet essai en mettant au point un appareil nommé « pressiomètre ». Le mérite de Louis MENARD est d'être le pionnier de la théorie pressiométrique qui a donné une impulsion à la mécanique des sols, notamment dans les domaines du calcul des fondations et l'étude des lois de comportement du sol.

L'essai pressiométrique est un essai de chargement du terrain in situ. Il consiste à gonfler dans le sol une sonde cylindrique, dilatable radialement, placée dans un forage préalable. Les contraintes dans le sol sont uniformes et l'essai est réalisé rapidement.

II.3.3.2. But de l'essai

Le but de l'essai est déterminer la capacité portante d'un sol et son tassement sous une fondation donnée et ce en tirant trois caractéristiques fondamentales et qui sont :

- La pression limite Pi et qui correspond à la rupture du terrain sur la paroi de la cavité cylindrique, et qui est directement liée à la capacité portante.

- Le module de déformation pressiométrique Em qui caractérise la phase de déformation pseudo-élastique de l'essai. Il intervient dans le calcul du tassement.

- La pression de fluage Pf qui correspond au passage du domaine des déformations pseudoélastiques du terrain qu'domaine des déformations plastiques.

Exploitation des résultats de l'essai : NF P 94 -110 1

Les résultats de l'essai pressiométrique peuvent être exploité dans plusieurs calculs tels que

- La capacité portante des fondations superficielles.
- La capacité portante des fondations profondes.
- Le tassement des fondations superficielles.
- Déformations des fondations profondes.

II.3.3.3. Principe de mesure

D'après Cassan (1955), on distingue dans un pressiomètre trois éléments (Figure 12):

- Le contrôleur pression volume ou C.P.V;
- Les tubulures de connexion;

• La sonde de mesure que l'on introduit dans un forage au niveau de l'essai et qui dilate radialement.

Le C.P.V est rempli d'eau et est mis en relation avec la sonde de mesure par les tubulures de connexion. Le refoulement de l'eau dans la sonde est obtenu par application de pressions croissantes sur la surface supérieure de l'eau au moyen d'un gaz comprimé. Au sujet de la m2mise en place de la sonde dans le trou de sondage (préforage, autoforage...), il existe divers procédés dépendants de la nature du sol. Quant à la sonde, elle comporte trois cellules :

 Une cellule de mesure centrale (d'un diamètre compatible avec les diamètres des outils de forage usuels) constituée d'un tube métallique revêtu d'une membrane en caoutchouc gonflée avec de l'eau, exerçant une pression radiale sur les parois du forage;

Figure 12: principe de l'essai

Deux cellules de garde de même conception, disposées aux extrémités de la cellule centrale et gonflées à l'air, tout au moins pour des essais effectués à des profondeurs <15m. Pour des profondeurs supérieures, il est recommandé de gonfler également à l'eau les cellules de garde, de façon à annuler la différence de pression en cellules due à la pression cylindrique des contraintes et des déformations au niveau de la cellule de mesure et ainsi de neutraliser les perturbations d'extrémité;

Tous les organes de mise en pression et de régulation sont pneumatiques.
Les déformations du sol sont mesurées à partir de: du volume d'eau injecté dans la cellule centrale est lue sur un tube indicateur en fonction du temps pour des paliers de pression Croissants de 1 minute.

Les résultats de l'essai sont traduits par deux courbes pressiometriques, l'une qui donne la variation de volume V60 mesuré à la minute en fonction de la pression, l'autre, dite courbe de fluage, qui correspond aux variations différées V60-V30 en fonction de la pression

Calcul de la capacité portante d'une fondation superficielle à partir de l'essai Pressiometrique

Cette méthode a été développée à l'origine par L. Ménard. La contrainte de rupture (capacité portante unitaire) sous charge verticale centrée est donnée par la formule générale donnant :

 $\mathbf{Qi} = \mathbf{qo} + \mathbf{kp} \left(\mathbf{Pi} - \mathbf{Po} \right)$ (2.5)

Avec :

qi : contrainte de rupture.

qo : contrainte totale verticale des terres au niveau de la base de la fondation.

Po: pression horizontale totale des terres au moment de l'essai.

Pi : pression limite pressiométrique.

Kp : facteur de portance pressiométrique.

D'Ou :

•
$$qo = y.D$$

• Po = $\sigma v \setminus o. ko + u$

Avec : $\sigma v \setminus o = qo$: contrainte totale verticale des terres au niveau de la base de la fondation.

ko : coefficient des pressions des terres au repos (en générale = 0.5)

u : pression interstitielle au niveau considéré

Le facteur kp se détermine d'apprêt la figure D'où le tableau :

Figure 13: Facteur de portance pressiometrique pour les semelles carrées et filante

type de so	1		kp : coefficient de portance
Argiles et limon	A	Argiles et limons mous	$0.8 * \left[1 + 0.25 * \left(0.6 + 0.4 * \frac{B}{L}\right) \frac{De}{B}\right]$
	В	Argiles et limons fermes	$0.8 * \left[1 + 0.35 * \left(0.6 + 0.4 * \frac{B}{L}\right) \frac{De}{B}\right]$
	C	Argiles très ferme à dures	$0.8 * \left[1 + 0.5 * \left(0.6 + 0.4 * \frac{B}{L}\right) \frac{De}{B}\right]$
Sable et graves	A	Lâches	$\left[1+0.35*\left(0.6+0.4*\frac{B}{L}\right)\frac{De}{B}\right]$
	В	Moyen et compacte	$\left[1+0.5*\left(0.6+0.4*\frac{B}{L}\right)\frac{De}{B}\right]$
	C	Compacte	$\left[1+0.8*\left(0.6+0.4*\frac{B}{L}\right)\frac{De}{B}\right]$
CRAIS	А	Molle	
	В	Altérés	$1.3\left[1+0.27*\left(0.6+0.4*\frac{B}{L}\right)\frac{De}{B}\right]$
	С	Compacte	
MARNE	A	MARNO CALCAIRE	$\left[1+0.27*\left(0.6+0.4*\frac{B}{L}\right)\frac{De}{B}\right]$

Tableau 2: kp Formule du coefficient de portance

> Calcul des tassements selon la méthode pressiométrique :

• Le tassement final Sf est la somme de deux termes Sc et Sd

• Sc : tassement de consolidation qui concerne le sol à proximité de la fondation jusqu'à la profondeur B/2

• Sd : tassement déviatorique qui concerne le sol de B/2 à 8B sf = sc + sd avec :

$$Sc = \frac{\alpha}{9 \cdot E_1} \cdot \left(p_{\text{ELS}} - \sigma_{\text{vo}} \right) \cdot \lambda c \cdot B \qquad Sd = \frac{2}{9 \cdot E_d} \cdot \left(p_{\text{ELS}} - \sigma_{\text{vo}} \right) \cdot B_o \cdot \left(\lambda_d \cdot \frac{B}{B_o} \right)^{\alpha}$$

EM : module pressiometrique (cf. § 2.9.3) ;

q' : contrainte effective moyenne appliquée au sol par la fondation ;

 σ 'vo: contrainte verticale effective calculée avant travaux au niveau de la fondation ;

B0 : largeur de référence égale à 0,60 m ;

 α : coefficient rhéologique dépendant de la nature du sol (tableau4) ;

 λc et λd : coefficients de forme, fonction du rapport L /B (tableau5)

Type de sol	Argiles		Limons		Sables		Graves		Roche	
Etat du sol	EM/P1	α	EM/P1	α	EM/P1	α	EM/P1	α	Etat	α
Sur consolidé ou très serré	>16	1	2/3	>12	1⁄2	>10	1/3	-	Normal	1/2
Normalement consolidé ou normalement serré	9~16	2/3	8~14	1/2	7~12	1/3	6~10	1/4	Très peu fracturé Très altéré	2/3
Sous- consolidé altéré et remanié ou lâche	7~9	1/2	5~8	1/2	5~7	1/3		-	Très fracturé	1/3

Tableau 3 : Valeurs du coefficient α (d'après fascicule 62, titre V)

Tableau 4 : valeurs des coefficients intervenant dans le calcul du tassement (Selon fascicule 62 – titre V) B et L sont les largeurs et longueur de la fondation

	1(cercle)	1(carré)	2	3	5	20
λ_{C}	1.00	1.10	1.20	1.30	1.40	1.50
λ_D	1.00	1.12	1.53	1.78	2.14	2.65

3.3.4. Avantages :

- Échantillons de plus grande taille testés
- Moins de perturbations
- Beaucoup plus rapide que les tests de laboratoire

3.3.5. Inconvénient :

- Le test ne peut pas contrôler l'état initial de contrainte
- Souvent, les contraintes induites pendant le test sont horizontales tandis que les charges de construction sont verticales

3.3.6. La pression de fluage Pf et la pression limite pl

D'après Cassan (1978) la pression de fluage est la limite supérieure de la phase élastique. C'est aussi la pression pour laquelle les déformations différées du sol deviennent importantes par rapport aux déformations immédiates. Elle s'évalue soit à partir de la courbe pressiométrique, soit à partir de la courbe de fluage.

La pression limite est la pression qui correspond à la plastification de tout le massif.

v la pratique, cette pression est difficile à atteindre, c'est pourquoi on adopte la pression sond

Figure14 : Relation pression-volume

4. Classes des sondages pressionmetriques réalisés dans la région AFLOU wilaya de LAGOUAT.

Les tableaux ci-dessous représentent des classes des sondages pressiometrique pour chaque type de fondation du pylône d'ancrage

Type de so	1	CLASSE				GAMA				
						TON/m	D(m		Q'ref(ELS	Q'ref(EL
			B/L	В	KP	3)	q'0) "A"	U) "A"
	Argile et limon mous	CLASSE 5 FUT	1,0 0	2,6 5	0,9 5	1,00	3,00	0,0 3	0,42	0,57
Argiles et limon	argile et limons fermes	CLASSE 4	1,0 0	1,7 5	1,1 2	1,60	3,00	0,0 5	0,97	1,31
	argile et limons dures	CLASSE 3	1,0 0	1,4 5	1,3 5	1,60	3,00	0,0 5	1,41	1,91
	lâches	CLASSE 5 FUT	1,0 0	2,6 5	1,2 6	1,00	3,00	0,0 3	0,42	0,57
Sable et graves	Moyen et compact e	CLASSE 4	1,0 0	1,7 5	1,5 7	1,60	3,00	0,0 5	0,97	1,31
	Compact e	CLASSE 3	1,0 0	1,4 5	2,1 0	1,60	2,50	0,0 4	1,41	1,91
	Compact e	CLASSE 5 DALLE	1,0 0	8,0 0	1,0 0	1,00	1,00	0,0 1	0,05	0,06
ROCHE	ROCHE	CLASSE		1,0	1,6	2,00	1,50	0,0	2,97	4,01

 Tableau 5 : Tableau des classes pour les sondages pressiometrique

Analyse et interprétation des résultats

TENDR	TENDR	2	0	8		3	
Е	Е						

Type de	CLASSE							Q'ref(ELS)	Q'ref(ELU)
sol	PROPOSE				GAMA	D	q'0	pylône	pylône
		В	De/B	KP	ON/m3	(m)	(mpa)	"C"(Mpa)	"C"(Mpa)
	CLASSE 5								
	FUT	4,6	0,65	0,93	1	3,4	0,034	0,28	0,38
Argiles et	CLASSE4	2,2	1,36	1,18	1,6	3,4	0,0544	1,14	1,55
limon	CLASSE 3	1,8	1,67	1,47	1,6	3,4	0,0544	1,68	2,27
	CLASSE5								
	FUT	4,6	0,65	1,23	1	3,4	0,034	0,28	0,38
	CLASSE4	2,2	1,36	1,68	1,6	3,4	0,0544	1,14	1,55
	CLASSE3	1,8	1,67	2,33	1,6	3,35	0,0536	1,68	2,27
	CLASSE								
Sable et	5DALLE	8,65	0,23	1,42	2,6	3,4	0,0884	0,16	0,21
graves	CLASSE 6	9,65	0,21	1,58	3,6	3,4	0,1224	0,18	0,24
ROCHE									
TENDRE	CLASSE2	2,3	0,87	1,68	2	1,5	0,03	1,03	1,39

Tableau 6 : différentes c	lasses pour chaq	ue type de fondation	du pylône d [*]	ancrage
---------------------------	------------------	----------------------	--------------------------	---------

4.1 Calcul des capacités portantes, vérifications des tassements et classification:

4.1.1 (Les pylônes d'ancrages et sondages pressiométrique) :

SONDA GE(N°)	Profondeu r (m)	Formation	Qadm (ELS)M pa	Qad m (EL U) Mpa	Massif VERIFIE	SC	SD	Tassement MM
1(A02)	2,5	Grés	2,16	3,24	Classe 02	0,0005	0,0022	2,7051
1(1102)	5,5	compact	2,18	3,27	010550 02	0,0007	0,0028	3,5351
3(A03)	2,5	Grés	2,15	3,23	Classe 02	0,0009	0,0037	4,5504

Tableau 7 : capacité portante et tassements des pylônes d'ancrages

	7,5	compact	2,19	3,28		0,0011	0,0044	5,5360
4(A04)	2,5	ADCILE	0,24	0,36	Classe 05	0,0084	0,0209	29,3307
4(A04)	5,5	ARGILE	1,50	2,25	FUT	0,0040	0,0099	13,8520
5(A05)	2,5	Grés	2,16	3,24	Classa 02	0,0005	0,0018	2,2770
J(A03)	9,5	compact	2,17	3,26		0,0010	0,0039	4,9089
7(A06)	2,5	Grés	2,17	3,26	Classe 02	0,0004	0,0015	1,8362
/(A00)	3,5	compact	2,16	3,23		0,0006	0,0024	2,9761
9(407)	2,5	Grés	2,17	3,25	Classe 02	0,0012	0,0048	5,9621
)(1107)	4,5	compact	2,17	3,26		0,0010	0,0042	5,2509
11(A08)	2,5	Grés	2,18	3,27	Classe 02	0,0006	0,0026	3,2429
11(A00)	7,5	compact	2,18	3,27		0,0007	0,0028	3,4630
16(A09)	2,5	MARNE	1,90	2,84	Classe 03	0,0020	0,0069	8,9638
10(A07)	3,5		1,89	2,84		0,0020	0,0066	8,5918
Pylône 24	2,5	Argile	1,51	2,27	Classe 04	0,0029	0,0092	12,0757
(A10)	4,5	molle	1,51	2,26		0,0029	0,0091	11,9297
Pylône 31	2,5	Encroutem	2,18	3,27	Classe 02	0,0002	0,0009	1,0907
(A11)	8,5	ent calcaire	2,19	3,29		0,0004	0,0018	2,1907
nylône 36	2,5	ARGILE	1,52	2,28	Classe 04	0,0016	0,0050	6,5515
pylone 50	4,5	TIROILL	1,52	2,28		0,0014	0,0046	5,9818
pylône 41	2,5	calcaire	2,12	3,18	Classe 03	0,0007	0,0026	3,2617
pylone +1	3,5	gréseux	2,12	3,18		0,0004	0,0013	1,6598
	2,5	Alternance	0,44	0,65		0,0036	0,0089	12,4257
pylône 44		argile à			Classe 05			
		aspect			FUT			
	4,5	schisteux	0,52	0,78		0,0048	0,0118	16,5951
pylône 54	2,5	ARGILE	1,51	2,27	Classe 04	0,0024	0,0077	10,1359
	4,5	sableuse	1,51	2,26		0,0022	0,0070	9,2667
pylône 63	2,5	ARGILE	1,53	2,29	Classe 04	0,0001	0,0003	0,4336
	4,5	sableuse	1,50	2,25		0,0025	0,0078	10,2844
pylône 73	2,5	ARGILE	0,64	0,97	Classe 04	0,0044	0,0139	18,2317
	8,5	sableuse	1,51	2,27		0,0018	0,0057	7,5521
pylône 82	2,5	ARGILE	0,72	1,08	Classe 05	0,0082	0,0205	28,7262
PJ10HC 02	3,5	sableuse	0,67	1,00	FUT	0,0061	0,0152	21,2816
pylône	2,5	argile	0,07	0,11	Classe 06	0,0017	0,0068	8,4713

31(A12)	3,5	brune	0,04	0,06		0,0007	0,0027	3,3551
pylône	2,5	argile	1,20	1,80	Classe 04	0,0020	0,0063	8,3110
31(A13)	7,5	rougeâtre	1,19	1,79		0,0014	0,0044	5,7498
pylône	2,5	argile	0,37	0,55	Classe 05	0,0162	0,0403	56,5051
31(A14	3,5	rougeâtre	0,36	0,53	FUT	0,0100	0,0249	34,9604
pylône	2,5	sable	2,06	3,09	Classe 03	0,0008	0,0030	3,8017
31(A15)	5,5	gréseux	2,02	3,03		0,0017	0,0064	8,1718
pylône	2,5	calcaire	2,16	3,24	Classe 02	0,0004	0,0022	2,6676
31(A16)	5,5	massif	2,17	3,25		0,0005	0,0027	3,2533
pylône	2,5	argile	2,06	3,09	Classe 03	0,0008	0,0030	3,7500
31(A17)	3,5	tufaugene	2,07	3,10		0,0009	0,0032	4,1133

Tableau 8 : Les capacités portantes et tassement pour les sondages pressiometrique

SONDA			Qadm	Qadm				
GE	Profond		(ELS)	(ELU)	massif			Tassement
(N°)	eur (m)	formation	Мра	Мра	VERIFIE	SC	SD	tot (MM)
2	2	Grés	2,20	3,29	Classe 02	0,0006	0,0008	0.94
2	4,5	compact	2,12	3,18		0,0005	0,0007	. 0,74
6	2,5	Argile	1,44	2,16	Classe 05	0,0048	0,0237	30.72
0	4,5	compacte	0,52	0,78	FUT	0,0009	0,0044	. 50,72
8	2	Argile	1,44	2,16	Classe 03	0,0029	0,0079	10.27
0	4,5	compacte	1,43	2,14		0,0025	0,0066	10,27
-10	2	Grés	2,16	3,23	Classe 02	0,0006	0,0008	1 13
-10	4,5	compact	2,18	3,27	C1055C 02	0,0007	0,0009	1,15
12	2	Limons	1,44	2,16	Classe 03	0,0011	0,0031	3.08
12	4,5	rouge	1,46	2,19		0,0004	0,0010	. 5,70
13	2	Grés	2,22	3,33	Classe 02	0,0016	0,0021	2 57
15	4,5	compact	2,21	3,31		0,0012	0,0017	2,57
	2	Argile	1,46	2,18		0,0002	0,0004	
14		schisteuse			Classe 04			0.72
17		s				0,0003		0,72
	4,5	compacte	1,46	2,19			0,0006	
15	2	Argile de	0,76	1,14	Classe 04	0,0035	0,0076	9.86
15	4,5	couleur	1,46	2,19	C1055C 04	0,0005	0,0010	7,00

		verdâtre						
	2	Argile de	1,49	2,21		0,0010	1,9486	
17		couleur			Classe 3			3,90
	4,5	verdâtre	1,50	2,23		0,0009	1,9486	
18	2,5	Argile	1,24	1,85	Classe 5	0,0101	2,9187	16.0/
10	4,5	jaunâtre	0,63	0,93	FUT	0,0033	2,9187	10,74
10	2,8	Argile	1,45	2,16	Classe/	0,0012	2,2103	3 70
17	4,5	jaunâtre	1,46	2,18	C105504	0,0013	2,2103	3,70
20	2	Argile	0,50	0,73	Classe5	0,0035	2,9187	6.25
20	4,5	jaunâtre	0,57	0,84	FUT	0,0037	2,9187	0,23
	2	Marno	0,48	0,71	Classe5	0,0049	2,9187	
21		calcaire			FUT			8,30
	4,5	compact	0,56	0,83	101	0,0049	2,9187	
	2	Argile	0,48	0,70	Classe5	0,0056	2,9187	
22		jaune			FUT			9,44
	4,5	verdâtre	0,56	0,83		0,0049	2,9187	
23	2	Argile	0,41	0,60	Classe5	0,0012	2,9187	16.68
23	4,5	verdâtre	0,36	0,53	FUT	0,0099	2,9187	10,00
25	2	Grés	1,48	2,20	Classe	0,0037	1,8074	15.83
23	4,5	friable	0,79	1,15	C105504	0,0022	1,8074	15,05
	2,5	Sable	1,80	2,68		0,0011	1,6452	
26		argileux			Classe 03			5,98
	4,5	limoneux	1,79	2,66		0,0009	1,6452	
27	2,8	Grés	1,80	2,67	Classe 03	0,0002	1,6452	0.96
21	4,5	friable	1,79	2,66		0,0001	1,6452	0,70
	2,8	Alternanc	1,48	2,20		0,0014	1,8074	
28		e de grés			Classe 04			5 88
20		et argile			Classe 04			5,00
	4,5	verdâtre.	1,48	2,21		0,0011	1,8074	
20	2,5	argile	0,33	0,48	Classe 05	0,0098	2,9187	16 //
27	4,5	rouge	0,35	0,51	RADIER	0,0089	2,9187	10,44
	2,5	Grés	2,21	3,29		0,0002	1,6452	
30		beige			Classe 03			1,04
	4,5	jaunâtre	2,20	3,29		0,0002	1,6452	

32	2,5	Tuf	1,34	1,98	Classo 04	0,0003	1,8074	1.62
52	4,5	rougeâtre	1,34	1,98	Classe 04	0,0004	1,8074	1,05
33	2	grés	2,24	3,33	Classe 03	0,0001	1,6452	1 22
33	4,5	compacte	2,25	3,34	Classe 03	0,0002	1,6452	1,22
	2	Alternanc	2,21	3,29		0,0009	1,6452	
		e de grés						
		et argile						
34		de			Classe 03			5,18
		couleur						
		jaune						
	4,5	verdâtre	2,22	3,30		0,0009	1,6452	
	2	Argile	1,27	1,88		0,0006	2,2103	
		verte à						
35		aspect			Classe 04			1,63
		schisteux						
	4,5	compacte	1,27	1,88		0,0005	2,2103	
	2	Tuf de	1,34	1,99		0,0005	1,8074	
37		couleur			Classe 04			2 14
57		blanchâtr			Clubbe of			2,11
	4,5	e	1,33	1,98		0,0005	1,8074	
38	2	calcaire	1,49	2,21	Classe 03	0,0000	1,3936	0.46
50	4,5	marneux	1,49	2,22		0,0000	1,3936	0,10
39	2,5	calcaire	1,48	2,20	Classe 03	0,0001	1,3936	0.75
57	4,5	marneux	1,49	2,22	C1055C 05	0,0000	1,3936	0,75
	2,8	tuff	1,49	2,21		0,0003	1,6452	
40		JAUNAT			Classe 03			1,64
	4,5	RE	1,26	1,87		0,0002	1,6452	
	2,8	Argiles à	0,54	0,79		0,0018	1,7039	
		aspect						
42		schisteux			Classe 05			9.65
12		de						,05
		couleur						
	4,5	verdâtre	0,77	1,15		0,0024	1,7039	
43	2,8	Argiles à	0,71	1,06	Classe 05	0,0030	1,7039	11,78

		aspect							
		schisteux							
		de							
		couleur							
	4,5	verdâtre	0,90	1,34		0,0024	1,7039		
	2,5	Calcaire	1,27	1,88		0,0001	1,4838		
		gréseux							
45		de			Classe 04			0,72	
		couleur							
	4,5	noirâtre	1,27	1,88		0,0001	1,4838		
	2,5	argile	1,27	1,88		0,0001	1,4838		
		verdâtre							
46		et bancs			Classe 04			0,62	
		de							
	4,5	calcaire	1,26	1,87		0,0001	1,4838		
	2	Alternanc	1,25	1,85		0,0005	1,4838		
47		e argile et			Classe 04			4,08	
	4,5	grés	1,26	1,87		0,0004	1,4838		
48	2	grés et	1,27	1,89	Classe 05	0,0009	1,6948	3 72	
-10	4,5	d'argile	1,27	1,88		0,0009	1,6948	5,72	
49	2,8	grés	1,46	2,16	Classe 04	0,0004	1,4779	4 71	
	4,5	calcaire	1,48	2,20		0,0006	1,4779	1,71	
	2	limon	1,21	1,79	Classe 05	0,0018	2,9032		
50		sablo			FUT			4,99	
	4,5	argileux	1,25	1,85	101	0,0029	2,9032		
51	2	limon	1,24	1,85	Classe 05	0,0026	2,9032	5 29	
51	4,5	argileux	1,26	1,87	FUT	0,0031	2,9032	5,29	
52	2	sable	0,77	1,14	Classe 05	0,0013	1,5160	8 81	
52	4,5	argileux	0,79	1,17	RADIER	0,0014	1,5160	0,01	
53	2	sable	1,25	1,86	Classe 05	0,0024	2,9032	4.09	
55	4,5	argileux	1,25	1,86	FUT	0,0013	2,9032	7,07	
	2	tuf	1,47	2,19		0,0004	1,4779		
55		blanchâtr			Classe 04			3,44	
	4,5	e	1,46	2,17		0,0003	1,4779		

	2	tuf	1,47	2,19		0,0004	1,4779		
56		blanchâtr			Classe 04			3,39	
	4,5	e	1,46	2,17		0,0003	1,4779		
	2	tuf	1,47	2,19		0,0004	1,4779		
57		blanchâtr			Classe 04			3,43	
	4,5	e	1,46	2,17		0,0004	1,4779		
59	2	limon	0,41	0,61	Classe 05	0,0013	1,5192	8 00	
50	4,5	noirâtre	0,45	0,66	RADIER	0,0012	1,5192	8,00	
50	2	limon	1,27	1,89	Classe 04	0,0008	2,2103	1 19	
39	4,5	argileux	1,26	1,88		0,0014	2,2103	4,10	
60	2	THE	1,58	2,34	Classe 03	0,0002	1,3890	3 37	
00	4,5		1,59	2,35		0,0003	1,3890	5,52	
61	2	TUF	1,59	2,36	Classe 03	0,0004	1,3890	1 51	
01	4,5		1,57	2,34		0,0004	1,3890	4,54	
67	2	TUF	1,59	2,37	Classe 03	0,0001	1,3890	4.05	
02	4,5		1,59	2,36		0,0004	1,3890	4,05	
64	2	TUF	1,57	2,34	Classo 03	0,0002	1,3890	3.24	
04	4,5		1,58	2,35		0,0003	1,3890	3,24	
65	2	TUF	1,58	2,35	Classo 03	0,0003	1,3890	2 12	
05	4,5		1,58	2,35		0,0003	1,3890	. 3,42	
66	2	TUF	1,58	2,34	Classe 03	0,0003	1,3890	3 65	
00	4,5		1,59	2,35		0,0003	1,3890	5,05	
67	2	TUF	1,63	2,42	Classe 03	0,0005	1,9422	1 18	
07	4,5		1,63	2,42		0,0011	1,9422	4,10	
68	2	TUF	1,62	2,40	Classe 03	0,0021	2,7067	1 91	
00	4,5		1,62	2,41		0,0021	2,7067	4,74	
	2	encroûte	1,59	2,36		0,0015	2,2016		
69		ment			Classe 03			4,75	
	4,5	calcaire	1,59	2,37		0,0016	2,2016		
	2	limon et	0,25	0,36	Classe 05	0,0008	1,3663		
70		grave peu			RADIER			11,24	
	4,5	compacte	0,30	0,43		0,0011	1,3663		
71	2	tuf	1,61	2,39	Classe 03	0,0003	1,6452	3.95	
71	4,5		1,63	2,42	Classe 03	0,0007	1,6452	3,95	

	2	encroûte	1,61	2,39		0,0003	1,6452	
72		ment			Classe 03			3,95
	4,5	calcaire	1,63	2,42		0,0007	1,6452	
74	2,8	argile très	1,28	1,89	Classa 04	0,0011	2,2016	2.24
74	4,5	compacte	1,28	1,89	Classe 04	0,0011	2,2016	5,24
	2	encroûte	1,62	2,40		0,0003	1,6452	
75		ment			Classe 03			1,80
	4,5	calcaire	1,63	2,42		0,0003	1,6452	
	2	encroûte	1,58	2,35		0,0026	2,7067	
76		ment			Classe 03			13,70
	4,5	calcaire	1,59	2,37		0,0059	2,7067	
	2	encroûte	1,58	2,34		0,0014	1,9422	
77		ment			Classe 03			5,10
	4,5	calcaire	1,57	2,32		0,0012	1,9422	
70	2	tuf	1,27	1,88	Classa 04	0,0032	3,2667	614
70	4,5	lui	1,27	1,89	Classe 04	0,0029	3,2667	0,14
79	2	limon	1,40	2,08		0,0004	2,2016	
		sablonneu			Classe 04			1,73
	4,5	х	1,43	2,12		0,0006	2,2016	
	2	SABLE	1,57	2,33		0,0004	2,2016	
80		Moyen ou			Classe 04			1,92
	4,5	compacte	1,58	2,35		0,0007	2,2016	
	2	Argiles et	0,24	0,35		0,0033	2,2241	
81		limons			Classe 05			7,59
	4,5	mous	1,25	1,86		0,0009	2,2241	
	2	limon	1,49	2,21		0,0012	2,0345	
83		argileux			Classe 04			1 35
05		peu			Classe 04			ч,55
	4,5	compacte	1,49	2,21		0,0013	2,0345	
	2	SABLE	1,47	2,19		0,0020	2,0345	
84		Moyen ou			Classe 04			15,70
	4,5	compacte	0,59	0,86		0,0047	2,0345	
85	2	Argile	0,90	1,32	Classe 04	0,0014	2,0345	18.05
05	4,5	limoneuse	0,67	0,99	- Classe 04	0,0054	2,0345	10,05
I		ı		1	1	1	I	I

	2	SABLE	1,48	2,20		0,0013	2,0345		
86		Moyen ou			Classe 04			4,23	
	4,5	compacte	1,48	2,20		0,0004	2,0345		
		SABLE							
87		Moyen ou			Classe 05			6.00	
07	2	compacte	0,41	0,60		0,0030	2,2241	0,99	
	4,5		1,24	1,85		0,0009	2,2241		
		limon							
88		argileux			Classe 05			11 12	
00	2	compacte	0,46	0,67		0,0048	2,2241	11,12	
	4,5		1,28	1,90		0,0017	2,2241	1	
80	2	SABLE	0,19	0,27	Classe 05	0,0007	1,3663	6 50	
09	4,5	lâches	1,25	1,86	RADIER	0,0001	1,3663	. 0,39	
	2	encroûte	1,44	2,13		0,0007	1,9422		
90		ment			Classe 03			2,61	
	4,5	calcaire	1,47	2,18		0,0005	1,9422		
02	2	SABLE	0,27	0,19	Classe 05	0,0007	1,3663	6.80	
92	4,5	lâches	1,81	1,21	RADIER	0,0003	1,3663	. 0,87	
03	2	SABLE	0,13	0,09	Classe 05	0,0013	1,3663	12.64	
75	4,5	lâches	0,67	0,45	RADIER	0,0009	1,3663	12,04	
	2	Argiles et	0,59	0,40	Classe 05	0,0009	1,3663		
94		limons			RADIFR			10,93	
	4,5	mous	0,38	0,27	IN IDILI	0,0011	1,3663		
95	2	SABLE	0,81	0,55	Classe 05	0,0085	2,2241	19 64	
75	4,5	lâches	0,82	0,56		0,0070	2,2241	19,01	
96	2	sable	0,10	0,08	Classe 05	0,0016	1,3663	15.81	
20	4,5	lâche	1,85	1,24	RADIER	0,0004	1,3663	15,01	
07	2	sable fin	2,44	1,64	Classe 04	0,0013	2,2016	5 00	
	4,5	argileux	2,47	1,66		0,0020	2,2016		
	2	Limons	0,98	0,66	Classe 05	0,0020	2,2241		
98		argileux			FUT			4,68	
	4,5	compact	2,50	1,68		0,0017	2,2241		
99	2	Limons	2,44	1,64	Classe 04	0,0022	2,2016	6 34	
	4,5	argileux	2,45	1,65	Classe 04	0,0018	2,2016	0,34	

		compact							
	2	Limons	2,45	1,65		0,0026	2,2016		
100		argileux			Classe 04			8,79	
	4,5	compact	2,45	1,64		0,0030	2,2016		
	2	Limons	2,47	1,66		0,0023	2,1843		
102		argileux			Classe 04			6,75	
	4,5	compact	2,36	1,59		0,0013	2,1843		
	2	Limons	2,38	1,60		0,0020	2,1843		
103		argileux			Classe 04			5,85	
	4,5	compact	2,40	1,61		0,0012	2,1843		
	2	Limons	2,45	1,64	Classe 05	0,0023	2,2241		
104		argileux			FUT			10,35	
	4,5	compact	2,47	1,66		0,0045	2,2241		
	2	Limons	2,18	1,47		0,0041	2,2016		
105		argileux			Classe 04			12,16	
	4,5	compact	2,18	1,47		0,0016	2,2016		
	2	Limons	1,51	1,02	Classe 05	0,0096	2,2241		
106		argileux			fut			22,15	
	4,5	compact	1,88	1,27	Tut	0,0023	2,2241		
	2	Limons	1,86	1,25	Classe 05	0,0035	2,2241		
107		argileux			FUT			8,06	
	4,5	compact	1,80	1,21	101	0,0010	2,2241		
	2	Limons	1,82	1,23	Classe 05	0,0035	2,2241		
108		argileux			FUT			7,96	
	4,5	compact	1,88	1,26	101	0,0022	2,2241		
	2	Limons	1,87	1,25	Classe 05	0,0035	2,2241		
109		argileux			FUT			8,80	
	4,5	compact	1,83	1,23	101	0,0038	2,2241		
110	2	limons	2,20	1,48	Classe 04	0,0043	2,1843	12.80	
110	4,5	compact.	2,20	1,48		0,0030	2,1843	. 12,00	
	2	Limons	2,19	1,47	Classe 05	0,0047	2,2241		
111		argileux			FUT			10,74	
	4,5	compact	2,19	1,47	1.01	0,0041	2,2241		
112	2	Limons	1,87	1,26	Classe 05	0,0004	1,3663	3,90	

		argileux			RADIER			
	4,5	compact	1,87	1,26		0,0004	1,3663	
	2	Tuf de	1,86	1,25	Classe 05	0,0016	1,5160	
113		couleur						10,12
	4,5	rougeâtre	1,84	1,24	KADILK	0,0008	1,5160	
	2	Tuf de	2,22	1,49		0,0007	2,2016	
114		couleur			Classe 04			8,59
	4,5	rougeâtre	2,18	1,47		0,0029	2,2016	
	2	Tuf de	0,98	0,66	Classe 05	0,0056	2,2241	
116		couleur						16,47
	4,5	rougeâtre	0,96	0,65	гот	0,0071	2,2241	
	2	Tuf sous	0,66	0,45	Classe 05	0,0059	2,2241	
117		forme de			FUT			18,44
	4,5	galet	0,63	0,43	101	0,0080	2,2241	
	2	Tuf de	0,66	0,45	Classe 05	0,0038	2,2241	
118		couleur			FUT			8,83
	4,5	rougeâtre	1,88	1,26		0,0009	2,2241	
	2	Tuf de	2,20	1,48		0,0004	1,6452	
119		couleur			Classe 04			2,72
	4,5	rougeâtre	2,21	1,49		0,0005	1,6452	
	2	Tuf de	1,88	1,26	Classe 05	0,0025	2,2241	5,73
120		couleur						
	4,5	rougeâtre	1,85	1,24	1.01	0,0007	2,2241	
	2	Tuf de	2,19	1,47		0,0010	2,1843	
122		couleur			Classe 04			3,10
	4,5	rougeâtre	2,21	1,49		0,0008	2,1843	
	2	Tuf de	0,75	0,51	Classe 05	0,0003	1,3663	
124		couleur						3,00
	4,5	jaunâtre	1,88	1,26	RADILR	0,0001	1,3663	
	2	Tuf de	1,44	0,98		0,0005	2,8724	
126		couleur			Classe 05			3 46
120		Blanchâtr			FUT			5,10
	4,5	e	1,95	1,31		0,0020	2,8724	

Discussion :

• A DEUX 2m de profondeur :

Le rapport pressiométrique (EM/Ple*) donne une valeur moyenne (EM/Ple*) _{moy}=68.04 qui variée entre Min et Max 9.15 et 426.78 respectivement ; ce rapport traduise un sol fortement Sur consolidé ou très serré (Cassan, 1988).

• à profondeur (4.5m) :

Le rapport pressiométrique (EM/Ple*) donne une valeur moyenne (EM/Ple*) _{moy}=72.58 qui variée entre Min et Max 9 et 315.47 respectivement ; ce rapport traduise un sol fortement Sur consolidé ou très serré (Cassan, 1988).

II.4. Les essais au laboratoire :

Les essais en laboratoire sont des essais qui se font sur des échantillons intacts ou remaniés prélevés lors de sondages convenablement exécutés qui sont susceptibles de donner avec précisions toutes les caractéristiques physiques et mécaniques des sols.

Les essais en laboratoire englobent d'une part les essais d'identification et d'autre part les essais physiques et mécaniques. Notre étude ici s'est portée sur quelques essais d'identifications.

- Essais Chimiques
- Essais physiques
- Essais mécaniques

II.4.1. Essai Chimiques : Teneur en Sulfates, Teneur en carbonates NF P 18-011.

Tableau 9 : les teneurs en carbonates (CaCO₃%) et en sulfate (SO₄%).

N° SONDAGE	PROF	SO4 %	CaCO ₃ %
A 02	2.50-2.80m	0.62	28.78
A 03	1,80-2,00m	0.67	32,55
A 04	3,10-3,30m	Traces	28,99
A 05	3,40-3,60m	0,82	32,11
A 06	3,60-3,80m	0,75	25,66
A 07	2,00-2,40m	0.85	24,30
A 08	2,00-2,40m	0.61	24,30
A 09	2.50-3.00m	0.98	Traces
A 10	2.50-3.00m	1.02	Traces
A 11	2.50-3.00m	0.32	30.05
A 12	2.50-3.00m	0.76	13 ,23

A13	1.50-3.00	0.74	11.02
A14	4.30-4.50	0.59	25.36
A15	2.20-2.60	0.64	23.11
A16	2.30-2.50	0.68	33.15
A 17	2,00-2,50m	0.79	28.78
PYLONE 36	3.30-3.80	1.28	15.23
PYLONE 41	2.60-3.00m	Traces	37,6
PYLONE 44	2.60-3.00m	0.52	/
PYLONE 54	2.50-3.00m	0.43	27.76
PYLONE 63	2.50-3.00m	0.57	28.65
PYLONE 73	1.80-2.00m	0.49	24.34
PVI ONE 82	2 50-2 80m	Traces	28.17

Discussion :

Les résultats obtenus (tableau 9) permettent de classer les sols comme suit :

Teneur en carbonate (CaCO₃ %):

- Sols faiblement marneux 10% < CaCO₃% < 30% : (A02; A04; A06; A07; A08; A12; A13; A14; A15; A17; PYLONE 36; PYLONE 54; PYLONE 63; PYLONE 73; PYLONE 82).
- Sols marneux 30% ≤CaCO₃ % < 70 %: (A03; A05; A11; *A16*; PYLONE 41).
- Sols non marneux 0%<CaCO₃%<10% : (A09 ; A10).

Teneur en sulfates SO4 % : niveaux d'agressivité des sols :

- Aggressive :(A02;A03; A05; A06; A07; A08; A09; A10; A12; A13; A15; A16; A17; PYLONE 36).
- Peu Agressif: (A14; PYLONE 44; PYLONE 54; PYLONE 63; PYLONE 73)
- Nulle : (A11 ; PYLONE 41 ; PYLONE 82)

II.4.2. Essais physiques :

a. Limites d'Atterberg : NF P 94 – 051

N°	Profondeur	W.L%	1.L%	l. p%	Classification
SONDAGE					
A04	2.50-2.80m	48,22	30,26	17,96	Argile plastique
A09	3.50-3.70m	36,23	26,15	20,08	Argile peu plastique

Tableau 10 : résultats de limites d'atterberg

Analyse et interprétation des résultats

A10	2.00-2.80m	63,41	25 ,45	37,96	Argile très plastique
A12	2.50-2.80m	52,86	24,66	28,2	Argile très plastique
A13	6.20-5.40m	42.58	29.43	13.15	Peu plastique
A14	4.30-4.50m	37.37	18.23	19.14	plastique
Pylône 36	6.20-5.40m	42.58	29.43	13.15	Peu plastique
Pylône 44	3.50-3.60m	33.00	23.02	9.98	Peu plastique
Pylône 54	2.20-2.60m	38.59	22.13	13.46	Peu plastique
Pylône 82	2.30-2.50m	30.59	13.3	13.29	Peu plastique

Figure 15: classification des sols fins sur le diagramme de plasticité (l'Abaque de Casagrande).

Discussion :

D'après l'Abaque de Casagrande (**figure 15**), on constate que le sol de la majorité des sondages carottés est classé comme étant argile et limons peu plastique, cependant ; les sols prélevés à partir des deux sondages carottés (A10. A12) sont classés comme des argiles très plastiques.

b. Teneur en eau, densités : NF P 94 - 050

N° SONDAGE	Profondeur	Teneur en EAU (%)	Ws%	γh%	γd%	Sr%
A04	2,50-3,00m	20.78	1.67	13.33	1.50	58.26
A09	2,50-3,00m	19.40	1.76	14.65	1.60	58.26

Tableau 11 : Teneur en eau, densités

5,20-5,80m	20.1	1.88	14.23	1.61	87.89
4.00-4.50m	20.67	1.77	15.66	1.72	80.32
5.00-5.70m	19.80	1.56	15.89	1.70	/
3.00-3.50m	19.49	1.76	16.57	1.68	/
2.20-2.60m	13.85	1.70	15.43	1.68	/
2.30-2.50m	16.41	/	/	/	/
2.50-3.00m	15.12	1.63	16.32	1.70	63.55
2.20-2.80m	26.00	1.77	14.98	1.90	76.09
2.50-2.80m	23.03	1.68	15.66	1.70	70.32
3.30-3.80m	24.38	1.65	17.41	1.84	73.75
2.30-2.70m	14.74	1.77	15.09	1.89	75.32
4,00-4,40m	20.6	1.57	16.00	1.70	/
2.20-2.80m	26.66	1.65	17.41	1.73	72.75
	5,20-5,80m 4.00-4.50m 5.00-5.70m 3.00-3.50m 2.20-2.60m 2.30-2.50m 2.50-3.00m 2.20-2.80m 3.30-3.80m 2.30-2.70m 4,00-4,40m 2.20-2.80m	5,20-5,80m20.14.00-4.50m20.675.00-5.70m19.803.00-3.50m19.492.20-2.60m13.852.30-2.50m16.412.50-3.00m15.122.20-2.80m26.002.50-2.80m23.033.30-3.80m24.382.30-2.70m14.744,00-4,40m20.62.20-2.80m26.66	5,20-5,80m20.11.884.00-4.50m20.671.775.00-5.70m19.801.563.00-3.50m19.491.762.20-2.60m13.851.702.30-2.50m16.41/2.50-3.00m15.121.632.20-2.80m26.001.772.50-2.80m23.031.683.30-3.80m24.381.652.30-2.70m14.741.774,00-4,40m20.61.572.20-2.80m26.661.65	5,20-5,80m20.11.8814.234.00-4.50m20.671.7715.665.00-5.70m19.801.5615.893.00-3.50m19.491.7616.572.20-2.60m13.851.7015.432.30-2.50m16.41//2.50-3.00m15.121.6316.322.20-2.80m26.001.7714.982.50-2.80m23.031.6815.663.30-3.80m24.381.6517.412.30-2.70m14.741.7715.094,00-4,40m20.61.5716.002.20-2.80m26.661.6517.41	5,20-5,80m20.11.8814.231.614.00-4.50m20.671.7715.661.725.00-5.70m19.801.5615.891.703.00-3.50m19.491.7616.571.682.20-2.60m13.851.7015.431.682.30-2.50m16.41///2.50-3.00m15.121.6316.321.702.20-2.80m26.001.7714.981.902.50-2.80m23.031.6815.661.703.30-3.80m24.381.6517.411.842.30-2.70m14.741.7715.091.894,00-4,40m20.61.5716.001.702.20-2.80m26.661.6517.411.73

Discussion :

L'interprétation des résultats obtenus (**tableau 11**) nous renseigne qu'on se retrouve des argiles avec des teneurs en eau naturelle faible de valeur W_{moy} =18.73% qui variée entre Min 13.85% et Max 26.66%.

Une densité faible des valeurs $\gamma h_{moy}=15.62\%$ et $\gamma d_{moy}=1.71\%$; qui variées entre Min 13.33% et Max 17.41%; Min 1.50% et Max 1.90%.

Un degré de saturation très mouillé (d'après terzaghi) de valeur Sr_{moy} =71.651% qui variée entre Min 58.26% et Max 87.89%.

II.4.3. Essais mécaniques

II.4.3.1. Essai de Compression Simple sur Echantillons de roche :

Tableau 12 : Deux pierres poreuses assurant le drainage des deux faces de l'échantillon

N° SONDAGE	Profondeur	Charge en KN	Résistance (Mpa)
A2	1,80-2,00m	235	7
A3	2,80-3,00m	241	7,17
A5	3,40-3,60m	234	6,96
A6	3,60-3,80m	245	7,29

Analyse et interprétation des résultats

A7	2,00-2,50m	236	7,02
A8	2,00-2,50m	210	6,25
A16	1,80-2,00m	246	6,4
Pylône 41	2,10-2,50m	436	12,95

Discussion :

:

L'interprétation des résultats obtenus (Tableau 12) nous renseigne qu'on se retrouve

Des roches faible 6 Mpa<Rc<20 Mpa selon la norme NF P 94-420 :

-grés compacte faible (A2; A3; A5; A6; A7; A8).

-calcaire massif faible (A16).

-calcaire creseux faible (Pylône 41).

II.4.3.2. Essais de cisaillement rectiligne : NF P 94 –71-1

Tableau 13 : Tableau récapitulatifs des résultats de cisaillement rectiligne.

				Essai de
N° SONDAGE	PROF	Cu	Φ	cisaillement
A02	1,80-2,00m	-	-	-
A03	2,80-3,00m	-	-	-
A04	2.50-3.00	0,3	23,07	2,7
A05	3,40-3,60m	-	-	-
A06	3,60-3,80m	-	-	-
A07	2,00-2,50m	-	-	
A08	2,00-2,50m	-	-	
A09	3.20-3.60	0,28	31,47	2,9
A10	4.50-5.00	1.10	16	1,9
A12	2.20-2.60	0,51	22,22	2,4
A13	2.20-2.80	0,62	19,05	1,93
A14	3.30-3.80	0,4	20,17	1,92
A15	2.30-2.80m	-	25	2,6
A16	1,80-2,00m	-	-	-
A17	3.00-3.80m	-	24,17	4.20
Pylône 36	2.30-2.70m	0,56	20,15	2,20
Pylône 41	2,10-2,50m	-	-	-

Pylône 44	2.80-3.00	1,30	17,00	1,8
Pylône 54	2.30-2.90m	1,2	16,3	2,1
Pylône 63			23	2,2
Pylône 73	2.30-2.90m	0,76	22	2,8
Pylône 82	3.00-3.40m	0,78	20,15	2,2

Discussion :

Cohésion non drainée (Cu) :

D'après les résultats de cisaillement rectiligne présentent une cohésion non drainée de valeur moyenne de 0.61 bars et des valeurs Min et Max de 0.28 bars et 1.30 bars respectivement.

Ce qui conduit à dire que ces argiles présentant une homogénéité avec une cohésion non drainée moyenne ; tel que : 0,28≤Cu≤1,30 bars.

L'angle de frottement interne (ϕ) :

D'après Le (tableau 13) on obtient une valeur moyenne de l'angle de frottement interne 21.41° , et des valeurs Min et Max de 16° et 31.47° .

On constat de la variation des valeurs de l'angle de frottement interne est faible.

II.4.3.3. Essai oedométrique : NF P 94 –090-1

N°							Tassement	
SONDAGE	PROF	С	ø	Pc%	Cc%	Cg%	en mm	Observation
	2.50-							
A04	3.00	0,30	23,07	1,43	20,13	3,55	27.00	Admissible
	3.20-							Admissible
A09	3.60	0,28	31,47	1,11	12,04	4,66	30.80	
	4.50-	1.10	16,00	1.00	15 77	2 1 5		Admissible
A10	5.00			1.09	13.77	5.15	3,70	
	2.20-							
A12	2.60	0,51	22,22	-	-	-	-	-
	2.20-							Admissible
A13	2.80	0,62	19,05	1,42	19,88	3,35	26.84	
	3.30-							Admissible
A14	3.80	0,89	25,17	1,10	16,56	3,28	28.09	
	2.30-							
A15	2.80	-	25,00	-	-	-	-	-

 Tableau 14 : Les résultats d'essai oedométrique.

	3.00-							
A17	3.80	-	24,17	-	-	-	-	-
	2.30-							Admissible
Pylône 36	2.70	0,97	20,15	1,15	22,04	3,67	35.44	
	2.80-							Admissible
Pylône 44	3.00	1,30	17,00	1,02	19,05	3,24	23.45	
	2.30-							Admissible
Pylône 54	2.90	0,98	16,30	1,17	21,70	3,73	27.72	
	2.30-							
Pylône 73	2.90	0,76	23,34	-	-	-	-	-
	3.00-							
Pylône 82	3.40	0,78	20,15	1,40	18,94	2,98	23.04	Admissible

Discussion :

D'après les résultats d'essai oedométrique présentent un coefficient de compressibilité (Cc) de valeur moyenne de 16.70% et des valeurs Min et Max de 12.04% et 22.04% respectivement.et des valeurs d'indice de gonflement (Cg) moyenne 3.16% et des valeurs Min et Max de 2.98% et 4.66% respectivement.

D'après le coefficient de compressibilité et l'indice de gonflement confirme que ces argiles raide peu gonflement d'après (Sanglérat).

II.5- Conclusion :

Les résultats obtenus des essais physico-mécaniques effectues sont données en annexes du présent rapport.

L'analyse des résultats obtenus des essais physico-mécaniques a révélé des formations géologiques diverse de par l'entendu du tracé qui se caractérise par :

- Marne et calcaire massifs et des grés friables :
- Des teneurs en eau naturelle faibles.
- Une granulométrie faible.
- > Agressivité nulle et des taux de calcaire élevés.
 - <u>Terrains argilo-silteux où s'intercalent des bancs gréseux décimétriques;</u>
- Des teneurs en eau naturelle moyenne.
- > Une granulométrie caractéristique uniforme et bien gradué.
- > Une cohésion moyenne et angle de frottement faibles.
- Peu Agressive à agressive.

CHAPITRE III : Corrélation entre les essais in situ et les essais au laboratoire

✓ III.1.Introduction :

En géotechnique, les ingénieurs sont confrontés à la nature du sol qui est rarement homogène. Cette hétérogénéité rend la détermination des paramètres physiques, mécaniques, de déformation et en chaque point difficile et coûteuse. C'est dans ce contexte que le recours aux corrélations est utile afin de compléter une information manquante ou même de vérifier des résultats expérimentaux effectués au laboratoire ou sur site.

Dans ce chapitre, on présentera l'intérêt des corrélations pour le géotechnicien ainsi que la présentation de plusieurs relations corrélées appliquées sur différents paramètres et types de sols.

III.2-Domaines d'utilisation des corrélations :

Dans la pratique de la mécanique des sols, les corrélations entre paramètres sont utilisées comme moyen de contrôle des résultats des essais in-situ et en laboratoire et comme moyen de fabrication des valeurs complémentaires de certains paramètres en fonction des autres. On utilise aussi les corrélations pour estimer certaines propriétés des sols (souvent, des propriétés mécaniques) en fonction des caractéristiques qui ont été mesurées souvent des propriétés physiques comme la cohésion ou l'angle de frottement) on peut ainsi lors des études préliminaires et dans certaines situations de projet disposer de valeurs des paramètres nécessaires au dimensionnement des ouvrages sans les avoir déterminées par des essais.

l'utilisation de corrélations constitue une technique très utiles dans les études géotechnique des terrain et son usage peut être recommandé tant pour compléter des données que pour contrôler la vraisemblance des résultats des essais réalisés en place comme en laboratoire : les données conformes aux corrélations tant générales qu'établies sur le site, sont en effet plus plausibles que celles qui en sont trop éloignées et pour lesquelles des vérifications complémentaires sont toujours souhaitables.

III.3-Rappel sur les statistiques :

Nous s'intéressons dans ce travail à relier des paramètres géomécaniques des sols mesurés de manières différentes en vue de retrouver des relations utiles à partir d'un grand échantillon de mesures recueillies sur le terrain. La fiabilité des relations en question dépend de la répartition statistique des populations raccordées à une base de données. Par conséquent, la construction de corrélation inter-paramètres requiert l'utilisation d'agrégats statistiques.

Ce chapitre est consacré à un bref rappel des définitions des termes statistiques les plus fréquemment utilisés.

III.3.1. Echantillon statistique :

Un échantillon est un sous –ensemble de n individu extrait de la population pour lesquelles on a mesuré (observé) un caractère quantitatif ou qualitatif. L'obtention d'un échantillon est une étape clé dans la démarche statistique car cet ensemble de donné permet de conclure sur les propriétés d'une population donnée.

III.3.2 Distribution :

La distribution d'un échantillon statistique est la représentation de la fréquence d'occurrence de chacune de ces valeurs. On divise ces valeurs en classe et on donne à chaque classe de valeurs une fréquence, à savoir le nombre de valeur comprise dans une classe.

III.3.3 Moyenne :

La moyenne \overline{X} d'un échantillon statistique x₁.....,x_n de taille n d'une population à N valeurs dont la moyenne réelle est μ donnée par (Génard, 1965; Dysli, juilet 2001) :

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{n} (x_i)$$
(3.1)

III.3.4 Variance :

Les valeurs dans une population ou échantillon statistique ne sont pas semblables. La mesure de leur dissemblance est l'un des éléments les plus importants dans la statistique. Si une liste de valeurs x_1, x_n une moyenne de X , les différences $x_1 - X$, $x_2 - X$,...., $x_n - X$ sont les déviations par rapport à la moyenne .On pourrait utiliser la moyenne de ces déviation pour mesurer la variabilité de la liste des valeurs x_1, x_n .Comme on peut facilement le montrer, cela n'est malheureusement pas possible car cette moyenne est nulle.

Pour remédier à ce problème, on remplace la déviation x_i - X par son carré 2 (x_i - X)² et on définit ainsi la variance 2s selon les auteurs (Génard, 1965; Dysli, juilet 2001; Lethielleux, 2010; Soporta, 2011):

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (xi - \overline{X})$$
(3.2)

III.3.5 L'écart type:

L'écart type est simplement la racine carrée de la variance. Pour un échantillon statistique de n valeurs, cet écart type se détermine par la relation selon (Génard, 1965; Dysli, juilet 2001; Lethielleux, 2010; Soporta, 2011; Lucien Leboucher, 2013):

$$S_{x} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (xi - \overline{X})^{2}}$$
 (3.3)

III.3.6 La covariance :

La covariance généralise à deux variables la notion de la variance, sa formule de définition est la suivante:

$$\operatorname{Cov}(\mathbf{x},\mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (\operatorname{xi} - \overline{X}) (\mathbf{y}_{i} - \overline{Y})$$
(3.4)

La covariance est donc la moyenne des produits des écarts aux moyennes (dans chaque produit, chacun des deux écarts est relative à l'une des variables considérées).Comme la variance, la covariance n'a pas de signification concrète. Dans le cas de la variance, on doit passer par l'écart type pour avoir un indicateur interprétable ; dans celui de la covariance, il faudra passer au coefficient de corrélation linéaire.

III.3.7 Corrélation :

Lorsque la courbe de régression de Y en x n'est pas parallèle à l'axe des abscisses, on dit que Y est corrélé avec X ou encore que Y est en corrélation avec X.

III.3.8 Coefficient de corrélation linéaire :

Il est clair que la covariance dépend des unités de mesures dans lesquelles sont exprimées les variables considérées. En ce sens, ce n'est pas un indice de liaison « intrinsèque ». C'est la raison pour laquelle on définit le coefficient de corrélation linéaire, rapport entre la covariance et les produit des écarts -types. Ce coefficient dit aussi de « Bravais-Pearson » caractérise de façon intrinsèque, la liaison linéaire entre les deux variables considérées. En particulier il ne dépend pas des unités de mesure des deux variables. Sa formule est la suivante selon (Génard, 1965; Dysli, juilet 2001; Soporta, 2011; Lucien Leboucher, 2013; François Couty, 1999; Cohen, 2002; Morineau, 1995):

Corrélation entre les essais in situ et les essais au laboratoire

$$R = \frac{cov(x,y)}{Sx Sy}$$
(3.6)

Le coefficient de corrélation est compris entre $-1 \le R \le 1$.Le signe du coefficient indique le sens de la liaison, ainsi une valeur positif indique que les deux variables ont tendance à varier dans le même sens positif .Au contraire une valeur négatif indique que les deux variable ont tendance à varier en sens opposés.

- **Pour R** \approx -1 corrélation négative parfaite.
- **Pour** $\mathbf{R} \approx \mathbf{0}$ Les deux variables sont indépendants.
- **Pour** $\mathbf{R} \approx \mathbf{1}$ corrélation positive parfaite.

Illustrons maintenant la relation entre la forme d'un nuage de points et la liaison entre les deux variables associées au moyen de quatre exemples très simple. On considère ci-dessous quatre exemple de données fictives, relative à deux variables quantitatives X et Y, sur, lesquels on a d'une part calculé le coefficient de corrélation linéaire R et d'autre part réalisé les graphiques de type nuage de points. L'objectif est d'illustrer les différents cas de figure donnant lieu à des corrélations positives ou négatives et plus au moins importantes.

III.4. Pratique corrélation sur les argiles d'Aflou :

La recherche de corrélations entre les paramètres de l'essai pressiométrique et ceux de cisaillement mesurés au laboratoire nous a impulsé à effectuer une tentative de corréler ces paramètres, nous avons essayé d'avoir une corrélation sur les argiles de la région de Aflou entre :

- Corrélation entre la pression limite nette (ple*) et la cohésion non drainée (Cu)
- > Corrélation entre la pression limite nette (ple*) et l'angle de frottement interne ($_{\varphi}$).
- > Corrélation entre le rapport pressiométrique $(\frac{Em}{Ple*})$ et le coefficient de compression Oedométrique (Cc).

III.4.1. Corrélation entre la cohésion et la pression limite (ple*) :

L'essai pressiométrique dans une argile est assimilable à un cisaillement radial du sol en conditions non drainées. La faible perméabilité du milieu et la durée de l'essai de chargement qui n'excède pas 1h ne permettent pas le drainage de l'eau, par conséquent la pression limite mesurée dans la phase de chargement plastique s'obtient par combinaison des termes de

Corrélation entre les essais in situ et les essais au laboratoire

résistance effective (granulaire) et de la pression interstitielle. Tenant compte du contexte mécanique de mesure de ple* en termes de drainage qui est assimilable aux conditions de mesure de C_u, il est fort intéressant de rechercher une relation entre ces deux paramètres en exploitant des données expérimentales établies dans les formations de la région de Aflou.

Se prémunir des aléas de mesure de C_u à partir des essais de cisaillement à la boite à cause du caractère mou de certaines argiles qu'on retrouve notamment dans les plaines et certaines zones littorales constitue notre objectif ci-après. Les travaux de recherche antérieure ont cadré dans des intervalles réguliers, des relations linéaires entre C_u et pl* d'après Cassan 1988 ; Amar et Jezequel 1972 et Ménard 1957. Les relations existantes établies dans des conditions géologiques différentes du cadre Algérien sont très utilisées par les ingénieurs pour le dimensionnement des projets de fondations. On s'attèle dans ce qui suit à l'établissement des relations $C_u=f(pl^*)$ en tenant compte des essais réels effectués.

Il apparait d'ores et déjà qu'entre la pression limite nette et la cohésion non drainée, on ait une relation de la forme, d'après (Cassan, 1988):

$$Cu = \frac{Pl - P0}{\beta} = \frac{Pl*}{\beta}$$
(3.7)

Ou le coefficient β varierait en fonction de la raideur de l'argile que l'on peut caractériser d'après (Cassan, 1988) par:

$$\frac{Em}{Pl-PL0} = \frac{Em}{Pl*} \tag{3.8}$$

La détermination de β reste un problème de corrélation que nous traiterons dans tout ce qui suit. Pour ce faire, nous avons utilisés plusieurs outils d'analyse numérique d'ajustement statistique en l'occurrence Origin6 et 8, Maple v16 et Grapher 2012. Ces simulateurs permettent la recherche de meilleures fonctions d'interpolation suivant le nuage de points et les contraintes imposées. Tableau 15: Comparatif des méthodes de calcul de la cohésion non drainée.

 $(0 \le Pl^* \le 0,3)$

Méthodes	Bahar, 1993	Ménard, 1957	Bahar et al, 2012
Formule	$Cu = \frac{Ple*}{4,1} (Mpa)$	$Cu = \frac{Ple*}{5,5}$ (Mpa)	$Cu = \frac{Ple*}{3,85} (Mpa)$
Domaine	Non spécifié	$0 \le Pl^* \le 0,3$	Non spécifié
d'application	(Illimité)		(Illimité)
Ecart par rapport à	40%	19%	43%
la présente étude			
Type d'essais	Cisaillements	Pressiométre	Cisaillements
Ayant conduit aux	Rectilignes et	Triaxiaux et	Rectilignes et
corrélations	essais PMT	scissomètres	essais PMT
Catégories			
d'argiles	Très plastique	Peu plastique	Très plastique

Tableau 16 : Comparatif des méthodes de calcul de la cohésion non drainée $(0,3 \le Pl^* \le 1)$

Méthodes	Amar et Jezequel 1972	Cassan 1988
Formule	Cu=0,025+ $\frac{Ple*}{10}$ (Mpa)	Cu=0,03+ $\frac{Ple*}{12}$ (Mpa)
Domaine	$0,3 \le Pl^* \le 1$	$0,3 \le Pl^* \le 1$
d'application		
Ecart par rapport à	23%	7,7%
la présente étude		
Type des essais	Pressiométre	Pressiométre
ayant conduit aux	Triaxiaux et	Triaxiaux et
corrélations	Scissomètres	Scissomètres
Catégories		
d'argiles	Très plastique	Peu plastique

Cas des sols cohérents (argiles) d'Aflou :

Bahar et al ont établies une relation entre la pression limite et la cohésion non drainée

			Bahar 1993	Bahar et al,2012
SONDAGE(N°)	Cu	Ple*(Mpa)	$Cu = \frac{Ple^*}{4,1} (Mpa)$	$Cu = \frac{Ple*}{3,85} (Mpa)$
4(A04)	0,3	0,618	0,15073171	0,16051948
16(A09)	0,28	3,859	0,94121951	1,00233766
pylône 24(A10)	1,1	3,83	0,93414634	0,99480519
pylône 36	0,56	3,868	0,94341463	1,00467532
pylône 44	1,3	1,408	0,34341463	0,36571429
pylône 54	1,2	3,848	0,93853659	0,99948052
pylône 73	0,76	1,638	0,3995122	0,42545455
pylône 82	0,78	1,699	0,41439024	0,4412987
pylône 31(A12)	0,51	0,228	0,05560976	0,05922078
pylône 31(A13)	0,62	3,868	0,94341463	1,00467532
pylône 31(A14)	0,4	1,149	0,2802439	0,29844156

Tableau 17 : des résultats des pressions limites et cohésion non drainée.

Ces résultats nous permettent d'établir une corrélation entre la pression limite nette et la cohésion non drainée pour (A10) : Argile molle avec un intervalle d'erreur de 15% et le (Pylône 54) : ARGILE sableuse avec un intervalle d'erreur de 20% (figure 16).

FIGURE 16 : Corrélation entre la pression limite nette et la cohésion non drainée

pour des valeurs de Ple* ≥ 1 (Mpa)

Discussion :

On remarque que le nuage de points n'affiche aucune allure particulière susceptible de construire une courbe d'approximation de la forme : Cu=f(Ple*).

La corrélation établie pour 11 essais est donnée par : Cu = 0.921Ple*+1.71, le coefficient de corrélation est très faible (R=0.048), donc aucune corrélation ne peut être acceptée dans ce site, ceci est due à l'influence de la nature lithologique de la couche qui est constituée principalement d'un recouvrement très hétérogène.

III.4.2. Corrélation entre la pression limite nette (ple*) et l'angle de frottement interne(φ) :

Les travaux de recherche antérieurs (Menard, 1957) (Varakasin, et al., 2014) ont donné des relations dans les sables et les roches. Cependant, (Menard, 1957) a recommandé de ne plus utiliser les valeurs de φ issues de la corrélation avec ple* pour la prédiction de la portance des sols.

Dans le même esprit, (Cassan, 1988) avait proscrit la recherche de corrélations entre ces deux paramètres (ple* ; φ) à cause des multiples incertitudes qu'ils renferment. Malgré

cela, nous avons essayé d'avoir une corrélation sur les argiles de la région d'Aflou la (fig) cidessous.

N°			
SONDAGE	PROF	ple*	φ
A04	2.50-3.00	0,618	23,07
A09	3.20-3.60	3,859	31,47
A10	4.50-5.00	3,83	16
A12	2.20-2.60	0,228	22,22
A13	2.20-2.80	3,868	19,05
A14	3.30-3.80	1,149	25,17
A15	2.30-2.80	3,858	25
A17	3.00-3.80	3,879	24,17
Pylône 36	2.30-2.70	3,868	20,15
Pylône 44	2.80-3.00	1,408	17
Pylône 54	2.30-2.90	3,848	16,3
Pylône 73	2.30-2.90	1,638	23,34
Pylône 82	3.00-3.40	1,699	20,15

Tableau 18 : résultats des pressions limites et angle de frottement interne

Discussion :

Le nuage de points de 13 essais n'affiche aucune allure particulière susceptible de construire une courbe d'approximation sous la forme : $\varphi=f$ (ple*). Le coefficient de la corrélation pour la formule $\varphi = -0.4324$ PLe* + 22.089 est très faible (R=0.0151), la corrélation n'est pas acceptée dans ce cas, ceci est due à l'hétérogénéité du sol.

4.3. Corrélation entre le rapport pressiométrique $(\frac{Em}{Ple*})$ et le coefficient de compression Oedométrique (Cc) :

Les difficultés souvent rencontrées par les géotechniciens lors de la réalisation de l'essai oedométrique sont toujours liées au remaniement des échantillons et au long temps que prend l'essai de compressibilité oedométrique notamment dans le cas des sols fins (argiles) dont la durée de l'essai dépasse 21 jours. En s'inspirant des travaux de Skempton (1970), nous avons tenté de relier le coefficient de compression oedométrique avec le rapport pressiométrique ($\frac{Em}{Ple*}$). Le choix d'un tel rapport n'est pas fortuit puisque les valeurs de ce dernier ont un rapport direct avec la raideur et le taux de consolidation du sol et sur lequel Menard (Cassan, 1988) s'est basé pour donner une classification des sols par degrés de consolidation. Un ensemble d'essais de 9 couples relatifs aux argiles normalement consolidées de la région de Aflou ont été utilisés, c'est à –dire des valeurs de ($\frac{Em}{Ple*}$) qui varient de 11 à 45.

Tableau 19 : résultats de rapport pressiométrique $\left(\frac{Em}{Ple*}\right)$ et le coefficient de compressionoedométrique (Cc)

N° SONDAGE	PROF	Сс	Em(MPa)	ple*	Em/ple*
A04	2.50-3.00	20,13	10,9	0,618	17,6375405
A09	3.20-3.60	12,04	142,6	3,859	36,9525784
A10	4.50-5.00	15,77	94,6	3,83	24,6997389
A13	2.20-2.80	19,88	108,6	3,868	28,0765253
A14	3.30-3.80	16,56	13,4	1,149	11,6623151
Pylône 36	2.30-2.70	22,04	174,8	3,868	45,1913133
Pylône 44	2.80-3.00	19,05	46,2	1,408	32,8125
Pylône 54	2.30-2.90	21,7	112,4	3,848	29,2099792

Pylône 82	3.00-3.40	18,94	41,3	1,699	24,3084167

Figure 18 : Corrélation entre le rapport pressiométrique et le coefficient de compression oedométrique.

Discussion :

Le coefficient de corrélation obtenus par la relation $Cc = 0,101(\frac{Em}{Ple*}) + 13,87$ est très faible (R=0,0214), le nuage de points n'affiche aucune allure particulière susceptible de construire une courbe d'approximation sous la forme $Cc=f(\frac{Em}{Ple*})$, la corrélation dans ce cadre ne peut être acceptée dans ce site, à cause de l'hétérogénéité des sols.

III.5. Utilisation de la corrélation pour la classification des sols :

Le rapport adimensionnel EM/p_{lm}^* des deux caractéristiques classiques de l'essai pressiométrique Ménard est un facteur complexe et puissant, qui dépend simultanément de la qualité de réalisation du forage pressiométrique, et de la proportion entre cohésion et frottement dans le comportement du sol soumis à l'essai, c'est-à-dire de sa nature. Son utilisation par Ménard pour définir le coefficient rhéologique α est un élément essentiel de la validité des calculs de déformation du sol par les méthodes pressiométriques.

Au cours des années récentes, en raison de l'accroissement des essais pressiométriques produits par des opérateurs manquant de formation et de maîtrise des techniques de forage les

Corrélation entre les essais in situ et les essais au laboratoire

mieux adaptées à chaque type de sol, techniques spécifiques à cet essai mais remarque valable aussi pour tous les essais géotechniques, de nombreux utilisateurs ont décelé une distorsion

entre les prévisions de tassement par la méthode pressiométrique et les déformations réellement observées sur les ouvrage construits.

Avec l'émergence de codes de calcul aux éléments finis, de nombreux ingénieurs ont pensé qu'il était possible, voire nécessaire, de délaisser la célèbre règle souvent nommée T-0 (Ménard & Rousseau, 1962) pour le calcul du tassement à partir d'un profil de modules pressiométriques, au profit d'une modélisation numérique complexe tenant compte de la géométrie de l'interface sol-structure, et de traiter le problème de la déformation en appliquant à ce modèle des lois de comportement basées sur l'élasticité linéaire, à l'aide d'une « corrélation » entre le module pressiométrique et un module d'Young.

III.5.1. Paramètres pressiometriques nécessaires et suffisants à la détermination de a .

III.5.1.1. Module E_m, pression limite p*_{1m} et confinement de l'essai :

La première présentation du coefficient rhéologique α en tableau à double entrée, en fonction du rapport EM/p*LM et de l'état de consolidation du sol, qui avait été donnée dans la notice D60 sur les règles d'exploitation des techniques pressiométriques et d'exploitation des résultats obtenus pour le calcul des fondations (Ménard, 1968) a été reconduite telle quelle dans les règlementations françaises puis européennes. Ménard prévoyait pourtant de réviser le tableau « en fonction de résultats d'essais expérimentaux », raison principale pour laquelle les valeurs de α étaient données sous forme de fractions unitaires. Mais le principe était établi : α est croissant quand EM/p*LM est croissant, depuis le comportement sableux jusqu'au comportement argileux, et croissant également lorsque le sol passe de la sous-consolidation ou de l'altération à là sur consolidation.

La principale raison de tracer des droites en coordonnées bi logarithmiques, était que l'on ne dispose absolument pas, dans le référentiel des confrontations entre méthode pressiométrique et fondations instrumentées, de données suffisantes pour proposer des courbes plus sophistiquées. Ces droites sont donc des constructions mathématiques simples, basée sur l'hypothèse.
$$\alpha = \frac{\left(\frac{Em}{Plm*}\right)^{1/n}}{K(P*lm)^{m/n}}$$
(3.1)

Sous cette forme en effet, les coefficients m et n (en exposants) et le facteur k, tous sans dimensions prennent empiriquement les valeurs nécessaires pour assurer le tracé désiré : m détermine l'angle des droites iso- α , n détermine l'écartement entre les valeurs, et k détermine, pour un couple de valeurs (m, n) donné, la position de la ligne maximale $\alpha = 1$. Les valeurs de α ainsi proposées peuvent être rendues assez conformes au tableau à double entrée de Ménard pour des essais à profondeur moyenne de quelques mètres utilisés pour des fondations superficielles.

Figure 19: Valeurs de α dans le diagramme Pressiorama. Tel qu'il peut apparaître dans les normes NF-P94-261 et NF-P94-262 (en projet).

Mais on voit assez vite que si les valeurs de EM/p*LM décrivent toujours assez bien la nature du sol, sableux, intermédiaire ou argileux, qui peut être connu par ailleurs au moment du forage pressiométrique ou, mieux par un sondage carotté au voisinage, la position des lignes d'iso valeurs de α par rapport à p*LM n'est plus compatible dès lors que l'on considère des essais réalisés à des profondeurs importantes : ceci est lié au fait que ce n'est pas la valeurs absolue de p*LM qui doit être prise en compte, mais la valeur relative p*LM/p0, sans

CHAPITRE III

Corrélation entre les essais in situ et les essais au laboratoire

dimension, qui tient compte du confinement de l'essai par la pression horizontale des terres au niveau où elle est mesurée. On est ainsi conduit à la formulation suivante, dans laquelle kE, m et n jouent le même rôle.

$$\alpha = \frac{\left(\frac{Em}{Plm^*}\right)^{1/n}}{Ke\left(\left(\frac{Plm^*}{P0}\right)^{m/n}\right)}$$
(3.2)

Le nouveau diagramme [log ($p*_{LM}/p0$), log ($E_M / p*_{LM}$)] qui en résulte une présentation peu intuitive, essentiellement parce que le géotechnicien est très habitué à ce que représente la pression limite, directement proportionnelle à la résistance du sol, alors que la grandeur sans dimension $p*_{LM}/p0$ est difficile à saisir. Elle représente en quelque sorte le degré de résistance du sol soumis à l'essai par rapport à une augmentation « normale » de résistance attendue croissante en fonction de la profondeur. LM résulte n'est pas tracé ici. Il const Les coefficients m et n peuvent prendre en théorie une large gamme de valeurs, mais en pratique seule une faible gamme de variations laisse les droites représentatives toutes présentes et étalées dans le champ de vision du diagramme. Nous proposons de les arrêter à m=0,5 et n=2, et avec ce couple de coefficients, kE prendra une valeur comprise entre 3 et 5 pour que α reste compatible avec l'usage. Nous avons retenu ici la valeur entière kE=4 d'où :

$$\alpha = \frac{\left(\frac{Em}{Plm^*}\right)^{1/2}}{4\left(\left(\frac{Plm^*}{P0}\right)^{1/4}\right)}$$
(3.3)

III.5.1.2. La relation possible entre E Young et EM :

Tout d'abord, il paraît peu judicieux de comparer le module d'Young mesuré par traction sur des solides polycristallins (barres métalliques) où la déformation est linéaire

jusqu'à la fin de la phase strictement élastique, et le module de déformation des sols, variable avec l'intensité de la contrainte, cette déformation étant de nature hyperbolique tout au long de l'application de la charge. C'est la raison qu'expose Ménard, dans son article fondateur de Sols-Soils n°1 (Ménard & Rousseau, 1962), pour créer la notion de coefficient a pour lequel il propose simultanément la gamme des valeurs fractionnaires dans différents sols, et une expression basée sur le module alterné :

$$\alpha = \left(\frac{E}{E\alpha}\right)^{\frac{1}{4}+v} \tag{3.4}$$

E étant aujourd'hui noté EM, et v étant « une valeur faible comparée à $\frac{1}{2}$, dépendante de facteurs secondaires ». Ménard pensait approcher avec Ea la valeur du module de microdéformations, noté alors E ϵ ; on s'accorde plutôt aujourd'hui à voir dans Ea une approche d'un module élastique EY. Paraphrasant Ménard on peut écrire :

$$EY = \frac{Em}{\alpha^n}$$
(3.4)

Avec n=2, soit en négligeant les facteurs secondaires :

$$EY = \frac{Em}{\alpha^2}$$
(3.5)

Pour des raisons non explicites, l'habitude avait été prise en France par les utilisateurs de résultats pressiométriques, de tronquer cette proposition et de retenir $E_Y = E_M / \alpha$ pour des estimations du module d'Young qui ne donnent pas satisfaction. Il y a eu sans doute attraction et confusion liée au fait que Ménard a plus tard également indiqué que $\alpha = EM/E+$, $E+ \ll$ module de déformation du sol dans un champ quasiisotrope », plutôt assimilable donc à un module de type oedométrique et non à un module d'Young. Des utilisateurs de longue date des méthodes pressiométriques avaient gardé l'usage de cette relation entre Ea et EM pour donner une estimation de α à partir d'essais cycliques (R Heintz, 2012). En identifiant α entre les relations (3) et (4), il vient :

$$\frac{Ey}{P*LM} = 16 * \left(\frac{P*LM}{P0}\right)^{\frac{1}{2}}$$
 (3.6)

Cette relation remarquable qui élimine EM et α et établit une relation directe entre Ey et p*LM, découle directement du choix fait ci-dessus pour les coefficients m et n. En effet, quelle que soient les valeurs adoptées pour ces coefficients, il se maintient toujours une forte corrélation entre un paramètre de rupture, p*LM, et un module d'Young définissant une relation linéaire élastique.

5.2. Etudes de cas de la région Aflou :

Apres dépouillement des résultats nous avons tentez de les réunir sur des abaques classer par profondeur et type de pylônes comme suit ;

Une série d'abaque pour les pylônes d'ancrage à chaque profondeur 2.5, 4.5, 7.5m pour un total de 23 essais soit 3 abaques.

Pour le pylône d'alignements dont le nombre d'essai était de 103 repartie sur deux profondeurs a eu droit au même traitement.

Les résultats des pylônes d'ancrage et des pylônes d'alignement sont représentés respectivement sur les figures 20, 21, 22, 23 et 24.

III.5.2.1. Les pylônes d'ancrage :

> À 2.5m de profondeur :

Figure 20: Les données préssionmetriques sur les pylône d'ancrages à 2.5 m de profondeur.

CHAPITRE III

On constate sur l'abaque de la figure 20, que pour les essais réalisés à une profondeur de 2m, un pourcentage de 9% des pressions limites est enregistré, il correspond à des roches dures dont le module pressiometrique est supérieur à 300MPA, un coefficient rhéologique α supérieur à 1 et un rapport Em/plm dépasse 100.

On remarque aussi que 61% des pressions limite se positionne dans une zone de marne et calcaire marneux correspondants à un module pressiometrique entre 30-300 MPa, un coefficient rhéologique α supérieur à 1/2 et un rapport em/plm* varie entre 25-120.

Environ 13% des pressions limites dans la zone argile et limons dont le module pressiometrique varie entre 3-30MPa, le rapport Em/plm * varie entre 17-35 et le coefficient rhéologique α entre 1/2-1.

Le reste des point sont séparés, environ 4% est réservé pour les sables et les graves compactes dont le coefficient rhéologique α est proche de 1/3 et le rapport Em/plm est d'environ 7;

Le 13% des points restants sont étalés sur des sols mou dont le module préssiometrique est inferieur a 3MPA, le rapport Em/plm* varie entre 7-20 et le coefficient rhéologique α entre 1/2-1.

Figure 21 : Les données préssionmetriques sur les pylônes d'ancrages à 4.5 m de profondeur.

CHAPITRE III

LES ESSAIS AU LABORATOIRE

On constate sur l'abaque (figure 21) que les essais réalisés sur une profondeur de 4.5m présentent un pourcentage de 7% des pressions limites et qui correspondent à des roches dures dont le module pressiometrique est supérieur à 300MPa ; ils sont caractérisés par un coefficient rhéologique α supérieur à 1 et un rapport Em/plm dépassant 100.

Environ 79% des pressions limite se trouvent dans la zone de marne et de calcaire marneux, et qui correspondent à un module pressiometrique entre 30-300MPa, à un coefficient rhéologique α varie entre 1/2-1 et un un rapport em/plm* varie entre 20-100.

On remarque aussi que pour une valeur de 14% des pressions limite, la zone est caractérisée par la présence d'argile et limons, avec un module pressiometrique variant entre 3et 30MPa, un rapport Em/plm* variant entre 10-25 et un coefficient rhéologique α entre 1/2-1.

> A 7.5 m de profondeur :

Figure 22 : Les données préssionmetriques sur les pylônes d'ancrages à 7.5 m de profondeur.

On constate sur l'abaque de la figure 22 ci-dessous, que les essais réalisés à une profondeur de 7.5m présentent environ 40% des pressions limites dans une zone de marne et calcaire marneux, ils ont un module pressiometrique qui varie entre 30-300MPa, un coefficient rhéologique α supérieur à 1 et un rapport em/plm* qui varie entre 55-110.

Environ 60% des pressions limites se situent dans la zone d'argile et de limons avec un module pressiometrique variant entre 3 et 30MPA, un rapport Em/plm* variant entre 30 et 55 et un coefficient rhéologique α supérieur à 2/3

III.5.2.2. Les sondage pressiometriques :

> A 2 m de profondeur :

Figure 23: Les données préssionmetriques sur les sondages pressiometriques à 2 m de profondeur.

On constate sur l'abaque de la figure 23 que les essais réalisés à une profondeur de 2m présentent 10% des pressions limites qui correspondent à des roches dures caractérisés par un coefficient rhéologique α supérieur à 1, un rapport Em/plm dépasse 100,

On remarque que 45% des pressions limites se trouvent dans une zone de marne et calcaire marneux, elles correspondent à un module pressiometrique variant entre 30 et 300 MPa, un coefficient rhéologique α qui varie entre ½-1 et un rapport em/plm* qui varie entre 20-100.

Environ 16% des pressions se trouvent dans la zone d'argile et limons avec un module pressiometrique qui varie entre 3-30MPa, un rapport Em/plm* qui varie entre 10-35 et un coefficient rhéologique α entre 1/3-1/2.

On remarque aussi que 4% des point sont séparés, ils représentent les sables et les graves compactes dont le coefficient rhéologique α est proche de 1/3

Moins de 10% des points restants sont étalés sur ;

- ✓ Des sols mous dont le module pessiometrique est inférieur à 3MPa et le rapport Em/plm* dépasse la valeur de 10.
- \checkmark Des sols boueux dont le module pressiometrique est inferieur à 0.3
- ✓ Des marnes et calcaire raides ou α est supérieur à 1 et Em/plm varie entre 60-100

 \blacktriangleright A 4.5 m de profondeur :

Figure 24 : Les données préssionmetriques sur les sondages pressiometriques à 4.5 m de profondeur.

On constate sur l'abaque (**figure 24**) que 50% des pressions limites mesurées sur des essais réalisés à une profondeur de 4.5m, correspondent à des roches dures dont le module pressiometrique est supérieur à 300MPa ; un coefficient rhéologique α supérieur à 1 et un Em/plm dépasse 70.

Environ de 35% des pressions limite se positionnent dans une zone de marne et calcaire marneux, elles correspondent à un module pressiometrique qui varie entre 30et 300MPa, un coefficient rhéologique α qui varie entre $\frac{1}{2}$ -1 et un rapport em/plm* varie entre 12-100.

Environ 15% des pressions se trouvent dans la zone des argiles et limons avec un module pressiometrique qui varie entre 3 et 30MPa, un rapport Em/plm* qui varie entre 8 et 25 et un coefficient rhéologique α supérieur à 2/3.

III.6. Conclusion :

Les corrélations réalisées sur les argiles d'Aflou entre la pression limite nette (Ple*), la cohésion non drainée (Cu), le coefficient de compression oedométrique (Cc) et l'angle de frottement (ϕ) ont présentées un coefficient de corrélation R très faible et proche de zéro avec un nuage de points qui n'affiche aucune allure particulière susceptible de construire une courbe d'approximation, les paramètres sont dans ce cas indépendants les uns des autres pour plusieurs raisons à savoir :

- ✓ Le nombre de réalisation des essais (couples) qui est très insuffisant.
- ✓ L'hétérogénéité du terrain.

Conclusion Générale

La compagne d'essais au laboratoire et in situ s'est étalée sur une longueur de plus de 45km, elle nous a fourni une multitude d'informations sur les formations géologiques existantes dans la région de AFLOU a moins de 10m la profondeur sur laquelle les sondages se sont arrêtés.

Le site présente des formations hétérogènes néanmoins la formation des marne et calcaire est prédominante, leurs module pressiometrique (Em) varie entre 30 et 300 MPa pour toutes les profondeurs des différents pylônes d'alignements.

Sur les pylônes d'alignements 2 m et 4,5 m, on constate la présence ;

- Des roches dures, de module pressiometrique supérieur à 300MPa.
- Des argiles et des limons de module pressiometrique (Em) variant entre

3 et 30 MPa dans tous les profondeurs des pylônes d'alignements 2 m et 4,5m

Sur les pylônes d'ancrage 2,5 4,5 7,5 m, on trouve ;

- Des sables et des graves mais en nombre très insuffisant.
- Des sols mous et boueux mais négligeables.

Les essais in situ (essai pressiométrique) sont de plus en plus employés en mécanique des sols grâce aux avantages liés à leur mode de mesure. Ils permettent de prendre en compte la variabilité spatiale naturelle des sols en place et, surtout, ils se déroulent de manière rapide et économique.

Les corrélations réalisées entre les paramètres déterminés in situ et ceux issus des essais au laboratoire et effectués sur les argiles présentent des résultats peu satisfaisons et ce pour le nombre insuffisant d'échantillons.

Les corrélations obtenues sur la pression limite nette (Ple^{*}), la cohésion non drainée (Cu), le coefficient de compression oedométrique (Cc) ainsi que l'angle de frottement (ϕ) sont aussi insatisfaisant à cause du nombre insuffisant des essais réalisés sur le sol argileux de la région d'Aflou.

Enfin la dernière corrélation réalisée entre les pressions limites et le rapport Em/plm* nous a permet de de classer les sols de la région d'Aflou en argile, marne, calcaire et roche.

Références bibliographiques

Abed S. (1982). Litho stratigraphie et sédimentologie du Jurassique moyen et supérieur du Dj. Amour (Atlas saharien). Thèse 3ème cycle, Univ. de Pau. 242 p.

Allochtones de l'Algérie. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences,

Amar, S., & Jezequel, J. (1972). Essais en place et en laboratoire sur sol cohérents:comparaison des resultats. Bulletin de liaison des ponts et chaussées.

Auboin, J. Debelmas et M. Latreille (Ed.), Géologie des chaînes alpinesissues de la Téthys. Mémoire du B.R.G.M. n°115, 67-85.

Bahar, R., Alimrina, & Belhassani, O. (2013). *Interpretation of a pressurmeter test in cohesive soils*. International conference on geotechnical engineering, Tunisia.

Bahar, R., Baidi, F., Belhassani, O., & Vincenes, E. (2012). Undrained strength of clays derived from pressurmeter tests, European journal of environmental and civil engineering.

Bettahar A., (2009). Les accidents majeurs de l'Atlas saharien central et les structures associées.

Bouillin et al., (1970). Définition d'un flysch massylien et d'un flysch mauretanien au sein des flyschs.

Cassan, M. (1988). *Les essais in situ en mécanique des sol, réalisation et interprétation.* SaintGermain, Paris- Edition EYROLLES.

Chalouan et al., (2008). The Rif Belt, In: **A. Michard et al**. (Ed.), Continental Evolution: The Geology of Morocco. Lecture Notes in Earth Sciences, 116, 203-302.

Chelghoum A., Hachour K., (2008). Structure des terrains jurassiques et crétacés de Tadjerouna (Sud-Ouest de Laghouat) et mise en évidence de la phase Néo-cimmérienne. Mémoire de PFE, USTHB, Alger, 92 p.

Durand-Delga M., Fontboté J.M., (1980). Le cadre structural de la Méditerranée occidentale. In : J.

Géotechnique appliquée au BTP Pierre Martin

Guiraud R. (1990). Evolution post-triasique de l'avant-pays de la chaîne alpine en Algérie d'après L'étude du bassin duHodna et des régions voisines. Publications de l'OfficeNational de la Géologie, Alger, Mémoire N°3, 259 p.

Série D: Sciences Naturelles, 270(19):2249-2252.

Génard, C. (1965). Cours de statistique déscriptive. Paris, edition Dunod Désision.

Masrouri, F., Wojtkowiak, F., El Heib, M., & Bousseler, o. (2004). Recherche d'une corrélation entre les essais pressiomètriques et les essais de cisaillement réalisés en laboratoire. Application aux grès vosgiens. Lille, France: journées nationales de géotechnique et de géologie.

Gambin M, Magnan J. P., Mestat Ph. (2008). Actes du symposium international 50 ans de pressiomètres, Presse de l'ENPC/LCPC, France.

Guettafi N. (2012). Comportement des sols mous lors d'un essai pressiometrique. Mémoire de magistère, Université El Hadj Lakhdar Batna.

- **Skempton.** (1970). *The consolidation of clays by gravitational compaction*. LONDON: Q.J.Géol.soc.
- Sanglerat, G., & Costet, J. (1981). Cours pratiques de la mécanique des sols tome1. paris: Edition Dunod.