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Abstract

This work studies the use of a class of fractional-order anisotropic diffusion equations for
noise removal. These equations are Euler–Lagrange equations of a cost functional which
is an increasing function of the absolute value of the fractional derivative of the image
intensity function. This work has three chapters. Chapter one presents some basic no-
tions as the fractional derivative, some PDEs as Perona-Malik equation, Euler-Lagrange
equation. In chapter 2, we concentrate about the numerical part (numerical algorithm)
of the proposed equation. In chapter 3, we consider some simulations are conducted to
evaluate and compare the results.

Keywords : Anisotropic diffusion. Image smoothing. Fractional-order partial differential
equation. Fractional-order difference. Image denoising.



Résumé

Ce travail étudie l’utilisation d’une classe d’équations de diffusion anisotropes d’ordre frac-
tionnaire pour l’élimination du bruit. Ces équations sont des équations d’Euler-Lagrange
d’un coût fonctionnel qui est un fonction croissante de la valeur absolue du dérivé frac-
tionnaire de la fonction d’intensité de l’image. Ce travail comporte trois chapitres. Le
premier chapitre présente quelques notions de base comme la dérivée fractionnaire, cer-
taines EDP, l’équation de Perona-Malik et l’équation d’Euler-Lagrange. Au chapitre 2,
nous nous concentrons sur la partie numérique (algorithme numérique) de l’équation pro-
posée. Au chapitre 3, nous considérons que certaines simulations sont effectuées pour
évaluer et comparer les résultats.

Mots-clés : Diffusion anisotrope. Lissage d’image. Équation différentielle partielle d’ordre
fractionnaire. Différence d’ordre fractionnaire. Débruitage d’image.
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List of Symbols

D := The Riemann-Liouville fractional derivative
CD := The Caputo fractional derivative
GLD := The Grunwald-Letnikov fractional derivative
Γ(·) := The gamma function
Ω := Open set of Rn

∂Ω := The borders of Ω
Lp(Rn) := {u : Ω→ Rn |

∫
Ω
|u(x)|pdx < +∞}

Cp(Rn) := {u : Ω→ R, continuous derivatives from order 0 to p}

Hs(R2) := The Sobolev space (s ∈ R)
x ∈ Rn := x = (x1, ..., xn)
t := The time, t ∈ [0,+∞[

i, j := Location (node numbers)
∆x, ∆y := The grid size
∆t := The step size
c(·) := The diffusion coefficient
α := The scale space (∈ R+)

Dαu := (Dαx, Dαy) The fractional derivative operator
∇u :=

(
∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xn

)
The gradient operator

div(~u) := ∇~u :=
n∑
i=1

∂u
∂xi

〈·, ·〉 := Inner product
↔ := Denotes the Fourier transform pair
F := The 2-D continuous Fourier transform operator(2-D CFT)
F−1 := The inverse 2-D continuous Fourier transform operator(2-D ICFT)
F := The 2-D discrete Fourier transform operator(2-D DFT)
F−1 := The inverse 2-D discrete Fourier transform operator(2-D IDFT)
SNR := Signal-to-noise ratio
σ := The noise level
k := Iteration number
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Introduction

As a preliminary introduction. The image is one of the most important ways that a person
can communicate with others. It addresses all human beings, educated and ignorant, small
and large, breaking the language barrier, so it is the most widespread. Russian novelist
Ivan Turgenev says that one picture has been exposed to what a writer could not say in
100 pages.

Image definition

The image is a representation of a scene, representation of a person or object by painting,
sculpture, drawing, photography, film, etc. It’s also a structured whole of informations
that, after being displayed on the screen, has a meaning for the human eye.

Representation of digital images

• Discrete representation : A digital image (in gray level) is a matrix of integer
or real values. A pixel is the position of indices of a matrix coefficient, moreover.
A color image, is given by three grayscale images representing the red, green, and
blue channels, i.e. a pixel is coded by 3 components (r, g, b).

• Continuous representation : Another "continuous" approach is to represent the
image by a function defined on a field Ω ⊂ R2, and with values in R. This repre-
sentation is better in domain of partial differential equations (PDEs).

3



Figure 1: Discrete image.

Image processing

Image processing is the set of methods and techniques operating on them, with the aim of
improving the visual appearance of the image and extracting information deemed relevant.
In fact, we can distinguish several domains related to images.

• Image processing consists of modifying (filtering) an image. Its purpose is to make
visible or hide things in the image.

• Image analysis is about measuring things through an image.

• Computer vision makes it possible to interpret the content of an image.

In the last two types of actions, many processing techniques are used (e.g. denoising,
restoration, etc).

Image restoration

Analog or digital images often suffer damage that affects their quality. An observed image
u0 is, in fact, a modified version of an unknown ideal image u that one would like to find
or approach by an image û.
A general model (linear) to represent these degradations is as follows

u0 =Mu+ δ,

where δ is a noise (often assumed to mean zero and variance σ2), and M is a continuous
linear operator defined on the space of the images.
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Image denoising

The observed image u0 is a noisy version of u. This noise can be additive or multiplica-
tive. Using the previous generic model, we take the identity M = Id.

A real image always contains a noise. This one can be more or less important. In some
cases, you may want to remove it or, at least, reduce it. This is an operation called
denoising.

Figure 2: Image denoising problem.

Isotropic diffusion

Is method often used to reduce noise within an image (for image denoising, restoration,
and enhancement). But it can damage image features such as edges, lines, and textures.
To avoid the damage, it has to be adaptively controlled by the amount of smoothing or
the direction of smoothing.

Problem : diffusion occurs in all direction, regardless of edges.

Anisotropic diffusion

Is a technique aiming at reducing image noise without removing significant parts of the
image content (Smoothing + Preserve the image features).

Result : diffusion in inhibited when the gradient gets more important (edges).

5



Figure 3: Isotropic vs Anisotropic diffusion.
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1.1 Reminders

Differentiability

Definition 1. [1] Given f : Rn −→ R and v a unit vector in Rn. The directional
derivative of f in the direction v at x is

∂f

∂v(x) = Dv(x) = lim
h→0
h>0

f(x + hv) − f(x)
h

,

when this limit exists.

Definition 2. [1] Let Ω ⊂ Rn be open, f : Ω→ Rm, and x ∈ Ω. f is differentiable at x
if there exists Tx ∈ L (Rn,Rm) such that

lim
h→0
h∈Rn

‖f(x + h) − (f(x) + Tx(h))‖
‖h‖

= 0,

f is differentiable if it is differentiable at all x ∈ Ω. Tx called differential (or derivative)
of f at x, is denoted dfx.

Adjoint operators

Let T : V1 → V2 be a linear operator on an inner product space V1 (are Hilbert spaces).

Definition 3. [2] The adjoint of T is a transformation T∗ : V2 → V1 satisfying

〈T(~x),~y〉 = 〈~x, T∗(~y)〉 ,

for all ~x ∈ V1,~y ∈ V2.

Remark 1. The adjoint of T may not exist.

Theorem 1. [2] Let V1, V2 be a finite-dimensional inner product spaces, and let T be a
linear operator on V1. Then there exists a unique function T∗ : V2 → V1 such that

〈T(~x),~y〉 = 〈~x, T∗(~y)〉 ,

for all ~x ∈ V1,~y ∈ V2. Furthermore, T∗ is linear.

Self-adjoint operators

Definition 4. [2] An operator T : V1 → V2 is self-adjoint if T = T∗.

Remark 2. If the vector space is Euclidean, we also speak of symmetric operator.
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Theorem 2. [2] Let V1, V2 be a finite dimensional inner product spaces over a field F,
and let T and U be linear operators on V1 having adjoints. Then

a) (TU)∗ = U∗T∗

b) (T∗)
∗
= T

c) I∗ = I

Let A = (aij) be an m× n matrix with complex entries.

Definition 5. [2] The adjoint matrix of A is the n × m matrix A∗ = (bij) such that
bij = aji.

1.2 Fractional calculus

Fractional calculus has been used to model physical and engineering processes, which are
found to be best described by fractional differential equations. In the recent years, frac-
tional calculus has played a very important role in various fields such as signal and image
processing.

1.2.1 Gamma function

Definition 6. [3] The Gamma function Γ(α) is defined by the following integral

Γ(α) =

∫∞
0
tα−1e−tdt (<(α) > 0).

By integrating in parts, we can see

Γ(α+ 1) = αΓ(α) <(α) > 0.

In particular
Γ(n+ 1) = n! ∀n ∈ N.

In the follows, we consider I = [a, b] (−∞ < a < b < +∞) be a finite interval on the
real axis R.
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1.2.2 Fractional integral

Definition 7. [3] Let f ∈ L1([a, b]). Riemann-Liouville’s fractional integral of the func-
tion f of order α ∈ R noted Iαaf is defined by

(Iαaf) (x) =
1
Γ(α)

∫x
a

(x− t)α−1f(t)dt x > a. (1.1)

When α ∈ N, the fractional integral generalizes the classical integral, e.g.

For α = 1 (
I1af
)
(x) =

∫x
a

f(t)dt.

Theorem 3. [3] If f ∈ L1([a, b]), then Iαaf exists for almost all x ∈ [a, b] and more
Iαaf ∈ L1([a, b]).

Definition 8. [4] Let θ = (0, 0) and α = (α1, α2) where 0 < α1, α2 6 1. Also, put
Ja × Jb = [0, a] × [0, b] where a and b are positive constants. The Riemann-Liouville
fractional partial integral of u ∈ L1 (Ja × Jb) is defined by

(Iαθu) (x, y) =
1

Γ (α1) Γ (α2)

∫x
0

∫y
0
(x− s)α1−1(y− t)α2−1u(s, t)dtds.

1.2.3 Fractional-order derivative

1.2.3.1 Riemann-Liouville fractional derivation

Definition 9. [3] Let f ∈ L1([a, b]), the fractional derivative in the sense of Riemann-
Liouville of f of order α ∈ R noted Dαaf is defined by

(Dαaf) (x) =

(
d

dx

)n
(In−αa f) (x)

=
1

Γ(n− α)

(
d

dx

)n ∫x
a

(x− t)n−α−1f(t)dt,

(1.2)

where n− 1 < α < n and x > a.
In particular, for α = m ∈ N, we have

(
D0
af
)
(x) =

1
Γ(1)

(
d

dx

) ∫x
a

f(t)dt = f(x),

(Dma f) (x) =
1
Γ(1)

(
dm+1

dxm+1

) ∫x
a

f(t)dt =
dm

dxm
f(x).

As a result the fractional derivative in the sense of Riemann-Liouville coincides with the
classic derivative for α ∈ N.

10



Definition 10. [4] Whenever the integral (Iαθu) (x, y) exists. The Riemann-Liouville
partial derivative of fractional order α for a function u ∈ L1 (Ja × Jb) is defined by

(Dαθu) (x, y) = D
2
xy

(
I1−αθ u

)
(x, y) =

∂2

∂x∂y

∫x
0

∫y
0

(x− s)−α1(y− t)−α2

Γ (1− α1) Γ (1− α2)
dtds.

1.2.3.2 Caputo fractional derivation

Definition 11. [3] Let α ∈]n − 1, n[, n ∈ N and f ∈ Cn([a, b]), we call derivative of
order α ∈ R in Caputo sense the function defined by(

CDαaf
)
(x) =

(
In−αa f(n)

)
(x)

=
1

Γ(n− α)

∫x
a

(x− t)n−α−1f(n)(t)dt.

Proposition 1. [3] If 0 6 α,β 6 1 with α+ β 6 1 and f of class C1 we have(
CDαa

CDβaf
)
(x) =

(
CDβa

CDαaf
)
(x) =

(
CDα+βa f

)
(x).

1.2.3.3 Relationship with derivatives in the sense of Riemann-Liouville

(
CDαaf

)
(x) = (Dαaf) (x) −

n−1∑
j=0

f(j)(a)(x− a)j−α

Γ(j+ 1− α) .

We can also write

(
CDαaf

)
(x) = Dαa

[
f−

n−1∑
j=0

f(j)(a)(x− a)j

j!

]
.

We deduce that if f(j)(a) = 0 for j = 0, 1, 2, . . . , n− 1 we will have CDαa = Dαa.

1.2.3.4 Grünwald-Letnikov fractional derivative

Definition 12. [3] Let α ∈]n−1, n[ and f ∈ C0([a, b]), we call derivative of order α ∈ C
(<(α) > 0) in Grünwald-Letnikov sense the function defined by

(
GLDαaf

)
(x) = lim

h→0

1
hα

n∑
j=0

Γ(j− α)

Γ(j+ 1)Γ(−α)f(x− jh).

Proposition 2. [3] If 0 6 n− 1 < α < n and 0 6 m− 1 < β < m we have(
GLDαa

GLDβaf
)
(x) =

(
GLDβa

GLDαaf
)
(x) =

(
GLDα+βa f

)
(x),

only if f(j)(a) = 0 for all j = 0, 1, . . . , r− 2. with r = max(m,n).

11



1.2.3.5 Relationship with derivatives in the sense of Riemann-Liouville.

If f is of class Cn, and 0 6 n − 1 6 α < n by doing part integrations and repeated
differentiations we obtain

(Dαaf) (x) =

n−1∑
j=0

f(j)(a)(x− a)j−α

Γ(j+ 1− α) +
1

Γ(n− α)

∫x
a

(x− t)n−α−1f(n)(t)dt =
(
GLDαaf

)
(x).

In this case the Grünwald-Letnikov approach and the Riemann-Liouville approach are
equivalent.

1.3 Fourier transform

To avoid convergence issues, the Fourier integral is first defined over the space L1(R) of
integrable functions. It is then extended to the space L2(R) of finite energy functions.

Definition 13. [6] Let f be a function satisfying
∫+∞
−∞ |f(t)|dt < +∞ (f ∈ L1(R)). The

Fourier transform is defined by

F{f(t)}(w) =

∫+∞
−∞ f(t)e

−jwtdt = f̂(w).

If f ∈ L1(R) and f̂ ∈ L1(R) then, the inverse transform is given by the following formula

F−1{f(t)}(w) =
1
2π

∫+∞
−∞ f(t)e

jwtdt.

Definition 14. [6] Two-dimensional (2D) Fourier transform of the function f ∈ L1(R2)

is defined by
f̂(w1, w2) =

∫∞
−∞
∫∞
−∞ f(x, y)e

−j(w1x+w2y)dxdy.

If f ∈ L1(R2) and f̂ ∈ L1(R2) then, the two-dimensional (2D) inverse Fourier transform
is given by the following formula

f(x, y) =
1
2π

∫∞
−∞
∫∞
−∞ f̂(w1, w2)e

j(w1x+w2y)dw1dw2.

Fourier transform properties

Property 1. [6] Let f ∈ L1(R) and c ∈ R, then

F{f(t− c)}(w) = e−jwcF{f(t)}(w) = e−jwcf̂(w).

12



Property 2. [6] Let be two functions f and g of R in R, with (f, g ∈ L1(R)), if F{f} and
F{g} are the Fourier transforms of f and g, respectively. The Fourier transform of the
convolution product f ? g1 given by

F{f ? g(t)}(w) = F{f(t)}(w) · F{g(t)}(w),

and often, a reciprocal formula

F{(f · g)(t)}(w) = F{f(t)}(w) ? F{g(t)}(w).

Property 3. [6] Let f ∈ L1(R), suppose that f is differentiable and that f ′ ∈ L1(R), then
the Fourier transform of the first-order derivative is

F{f ′(t)}(w) = (jw)F{f(t)}(w) = (jw)f̂(w).

Proof. Use integration by parts: ∫
udv = [uv] −

∫
vdu,

with
u = e−jwt dv = f′(t)dt

du = −jwe−jwtdt v = f(t)

This yields
F{f ′(t)}(w) =

∫∞
−∞ f

′(t)e−jwtdt

= f (t)e−jwt
∣∣∞
t=−∞ −

∫∞
−∞−jwf(t)e−jwtdt

= jw

∫∞
−∞ f(t)e

−jwtdt

= jw · F{f(t)}(w).

The first term consists of an oscillating function times f(t). But if the function is bounded
so that

lim
x→±∞ f(t) = 0,

then the term vanishes. �

Remark 3. [6] More generally, if f, ..., f(n) ∈ L1(R), we get

F{f(n)(t)}(w) = (jw)nF{f(t)}(w) = (jw)nf̂(w) (n ∈ N).
1We call convolution product of f and g, denoted f ? g, the function, if it exists, defined by

(f ? g)(t) =

∫
R
f(t− τ)g(τ)dτ.

13



Property 4. [3] Let f ∈ L1([a, b]) be a function such that F(f) and F (Iαaf) exist and
α ∈ R. The Fourier transform of the Riemann-Liouville integral satisfies the relation

F{Iαaf(t)}(w) = (jw)−αF{f}(w) = (jw)−αf̂(w).

(n− 1 < α < n), n ∈ N.

Proof. Let’s calculate the Fourier transform of the integral fractional Riemann-Liouville.

Iαaf(t) =
1
Γ(α)

∫ t
a

(t− τ)α−1f(τ)dτ

=
tα−1

Γ(α)
? f(t)

(1.3)

Let’s start with the Fourier transform of the function

h(t) =

{
tα−1

Γ(α)
, (t > 0)

0, (t 6 0)

Then
F {h(t)} (w) =

∫+∞
−∞ h(t)e

−jwtdt

=

∫ 0
−∞ h(t)e

−jwtdt+

∫+∞
0

h(t)e−jwtdt

= 0+
∫+∞
0

h(t)e−jwtdt =

∫+∞
0

tα−1

Γ(α)
e−jwtdt

=
1
Γ(α)

∫+∞
0

(
y

jw

)α−1

e−y
dy

jw
(y = jwt, dy = jwdt)

=
1
Γ(α)

∫+∞
0

yα−1

(jw)
αe

−ydy =
(jw)

−α

Γ(α)

∫+∞
0

yα−1e−ydy

=
(jw)

−α

Γ(α)
Γ(α) = (jw)

−α .

Now we can find the Fourier transform of the fractional integral of Riemann-Liouville 1.3,
which can be written as the convolution of the functions h(t) and f(t), i.e.

Iαag(t) = h(t) ? f(t).

Using the second property 2 we obtain

F {Iαaf(t)} = (jw)−αf̂(w).

�
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Property 5. [3] Similarly, let f ∈ L1([a, b]) be a function for which F(f) and F (Iαaf) are
defined and α ∈ R . Then the Fourier transform of the derivative in the Riemann-Liouville
sense is defined by

F{Dαaf(t)}(w) = (jw)αF{f(t)}(w) = (jw)αf̂(w).

(n− 1 < α < n), n ∈ N.

If f ∈ L1([a, b]) and f̂ ∈ L1([a, b]) then, the inverse transform is given by the following
formula

Dαf(t) = F−1 {(jw)αF{f(t)}} .

Proof. Let’s calculate the Fourier transform of the fractional derivative in Caputo sense.(
CDαaf

)
(t) =

1
Γ(n− α)

∫ t
a

(t− x)n−α−1f(n)(x)dt

=
tn−α−1

Γ(n− α)
? f(n)(t)

Taking the Fourier transform of this Caputo’s derivative results in the following expression

F{CDαaf(t)}(w) = F
{ tn−α−1

Γ(n− α)
? f(n)(t)

}
(w).

Now, from the convolution property of the Fourier transform 2, we get

F{CDαaf(t)}(w) = F
{ tn−α−1

Γ(n− α)

}
(w) · F{ f(n)(t)}(w)

=
F{tn−α−1}(w)

Γ(n− α)
· F{f(n)(t)}(w)

=
(jw)α−n+1−1

Γ(n− α)
Γ(n− α) · (jw)nF{f(t)}(w)

= (jw)α−n · (jw)nF{f(t)}(w)

= (jw)αF{f(t)}(w),

where F{t−µ} = (jω)µ−1Γ(1− µ).

The same result for Dαaf(t) and GLDαaf(t).

�

Definition 15. [6] For a two-dimensional, periodic function (e.g., an intensity image)
u(x, y) of size m× n, the discrete Fourier transform (2-D DFT) is defined as

û(w1, w2) =
1√
mn

m−1∑
x=0

n−1∑
y=0

u(x, y) · e−j2π(
w1x
m +

w2y
n ),
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for the spectral coordinates w1 = 0 . . .m− 1 and w2 = 0 . . .n− 1. Similarly, the inverse
2-D DFT is defined as

u(x, y) =
1√
mn

m−1∑
w1=0

n−1∑
w2=0

û(w1, w2) · ej2π(
w1x
m +

w2y
n ),

for the image coordinates x = 0 . . .m− 1 and y = 0 . . .n− 1.

Property 6. [10] The translation property of the 2-D DFT is

u (x− x0, y − y0)↔ e−j2π(
w1x0
m +

w2y0
n )û (w1, w2) .

1.4 Anisotropic diffusion

1.4.1 Introducing the Perona-Malik equation

The Perona-Malik model, first proposed in 1987, is a nonlinear partial diffusion equation
that uses an inhomogeneous diffusivity coefficient. It is widely used in image processing
for purposes like smoothing, restoration, segmentation, filtering or detecting edges. It is
usually presented in a general form

∂tu(x, t) = ∇(c(u(x, t))∇u(x, t)). (1.4)

Where c : R → [0, 1] is a decreasing and continuous function (Edge stopping function or
diffusion coefficient, is called also diffusivity) vanishing on the edges (high gradients), and
close to 1 on regular regions (low gradients), such that

c(0) = 1, and lim
x→+∞ c(s) = 0.

The typical choices of the function c(·) are

c
(
s2
)
=

1
1+ s2

λ2

,

and
c
(
s2
)
= exp

(
−
s2

2λ2

)
,

with the parameter λ > 0.

The Perona-Malik equation is associated with the following energy functional

E(u) =

∫
Ω

f(|∇u|)dΩ,

16



(a) Image noisy. (b) Heat equation. (c) Perona-Malik equation.

Figure 1.1: Edges preserving by Perona-Malik model.

where f(·) > 0 is an increasing function associated with the diffusion coefficient as

c(s) =
f′(
√
s)√
s

.

Anisotropic diffusion equations is then shown to be an energy-dissipating process
that seeks the minimum of the energy functional. We consider the following functional
defined in the space of continuous images over a support of Ω.

E(u) =

∫
Ω

f (|Dαu|)dΩ. (1.5)

Dαu = (Dαxu,Dαyu) and |Dαu| =
√
D2
αx +D

2
αy.

We can formally compute the Euler–Lagrange equation for this minimization problem as
follows.

Take any test function η ∈ C∞(Ω) . Define

Φ(a) = E(u+ aη) =

∫
Ω

f (|Dα(u+ aη)|)dxdy =

∫
Ω

f (|Dαu+ aDαη|)dxdy.

17



We obtain

Φ′(0) = lim
a→0

Φ(a) −Φ(0)
a

= lim
a→0

E(u+ aη) − E(u)

a
=

d

da

∣∣∣∣
a=0

E(u+ aη)

=
d

da

∣∣∣∣
a=0

∫
Ω

f (|Dαu+ aDαη|)dxdy =

∫
Ω

d

da

∣∣∣∣
a=0

f (|Dαu+ aDαη|)dxdy

=

∫
Ω

(
d

da

∣∣∣∣
a=0

|Dαu+ aDαη| f
′ (|Dαu|)

)
dxdy =

∫
Ω

(
Dαη

(Dαu)
T

|Dαu|
f′ (|Dαu|)

)
dxdy

=

∫
Ω

(
f′ (|Dαu|)

Dαxu

|Dαu|
Dαxη + f′ (|Dαu|)

Dαyu

|Dαu|
Dαyη

)
dxdy

=

∫
Ω

(
c
(
|Dαu|

2
)
DαxuDαxη+ c

(
|Dαu|

2
)
DαyuDαyη

)
dxdy

=

∫
Ω

(〈
c
(
|Dαu|

2
)
Dαxu,Dαxη

〉
+
〈
c
(
|Dαu|

2
)
Dαyu,Dαyη

〉)
dxdy

=

∫
Ω

(〈
D∗αx

(
c
(
|Dαu|

2
)
Dαxu

)
, η
〉
+
〈
D∗αy

(
c
(
|Dαu|

2
)
Dαyu

)
, η
〉)
dxdy

=

∫
Ω

(
D∗αx

(
c
(
|Dαu|

2
)
Dαxu

)
+D∗αy

(
c
(
|Dαu|

2
)
Dαyu

))
ηdxdy,

for all η ∈ C∞(Ω), where D∗αx is the adjoint of Dαx and D∗αy is the adjoint of Dαy. Thus,
the Euler–Lagrange equation is

D∗αx

(
c
(
|Dαu|

2
)
Dαxu

)
+D∗αy

(
c
(
|Dαu|

2
)
Dαyu

)
= 0. (1.6)

The Euler–Lagrange equation may be solved through the following gradient descent pro-
cedure

∂u

∂t
= −D∗αx

(
c
(
|Dαu|

2
)
Dαxu

)
−D∗αy

(
c
(
|Dαu|

2
)
Dαyu

)
. (1.7)

• When α = 1 , 1.7 is precisely the Perona–Malik equation[7], namely

∂u

∂t
= div

(
c
(
|∇u|2

)
∇u
)
. (1.8)

• When α = 2, 1.7 is precisely the fourth-order anisotropic diffusion equation[8],
namely

∂u

∂t
= −∇2 [c (|∇2u|2

)
∇2u

]
. (1.9)

• When 1 6 α 6 2, 1.7 leads to a “natural interpolation” between 1.8 and 1.9, e.g.
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The third-order pseudo-PDE α = 3/2 = 1.5.

∂u

∂t
= −D∗3/2x

(
c
(∣∣D3/2u

∣∣2)D3/2xu
)
−D∗3/2y

(
c
(∣∣D3/2u

∣∣2)D3/2yu
)

= −(−1)2 CD3/2x

(
c
(∣∣D3/2u

∣∣2)D3/2xu
)
− (−1)2 CD3/2y

(
c
(∣∣D3/2u

∣∣2)D3/2yu
)

= −c
(∣∣D3/2u

∣∣2) CD3/2x
(
D3/2xu

)
− c

(∣∣D3/2u
∣∣2) CD3/2y

(
D3/2yu

)
= −c

(∣∣D3/2u
∣∣2) [CD3/2x

(
D3/2xu

)
+ CD3/2y

(
D3/2yu

)]
.

Note that in this Euler–Lagrange equation, for the unknown u ∈ H2α(Ω), we will first
prolongate u to Eu ∈ H2α (R2)2 by the prolongation operator E when we work with the
Fourier transform û of u.

2For any s ∈ R, the Sobolev space Hs (R2) can be defined thanks to the Fourier transform

Hs (Rn) =
{
u ∈ L2 (Rn) |

∫
Rn

(
1+ |w|2

)s
|û (w)|2 dw < +∞} .

The space Hs (R2) is a Hilbert space equipped with the norm

‖u‖2
Hs =

∫
Rn

(
1+ |w|2

)s
|û(w)|2dw, w = (w1, w2).
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2.1 Discretizations of the problem

For practical applications, we first assume that the initial discrete image u is m × m
pixels, and that it has been sampled from its continuous version at uniformly spaced
points starting at (0, 0), i.e., u(x, y, t) = u(i∆x, j∆y, k∆t) for i, j = 0, . . . ,m − 1 and
k = 0, 1, ... /∆x = ∆y = 1 (chosen). The approximate values of u will be denoted by

Uki,j ≈ u (xi, yj, tk) .

Figure 2.1: Finite-Difference Scheme.

We shall approximate the derivatives by finite differences (explicit scheme).

The simplest difference scheme based at the mesh point (xi, yj, tk) uses a forward differ-
ence for the time derivative, this gives

uk+1
i,j − uki,j
∆t

=
u (xi, yj, tk+1) − u (xi, yj, tk)

∆t
≈ ∂u
∂t

(xi, yj, tk) ,

for any function u with a continuous t-derivative. The scheme uses a centred second
difference for the second order space derivative

uki−1,j − 2uki,j + uki+1,j

(∆x)2
=
u (xi−1, yj, tk) − 2u (xi, yj, tk) + u (xi+1, yj, tk)

(∆x)2
≈ ∂

2u

∂x2
(xi, yj, tk) ,

then

uk+1
i,j − uki,j
∆t

= α

[(
uki−1,j − 2uki,j + uki+1,j

(∆x)2

)
+

(
uki,j−1 − 2uki,j + uki,j+1

(∆y)2

)]
= α

(
uki,j−1 + u

k
i−1,j − 4uki,j + uki+1,j + u

k
i,j+1

)
.
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Thus
uk+1
i,j = uki,j + ∆tα

(
uki,j−1 + u

k
i−1,j − 4uki,j + uki+1,j + u

k
i,j+1

)
= (1− 4∆tα)uki,j + ∆tα

(
uki,j−1 + u

k
i−1,j + u

k
i+1,j + u

k
i,j+1

)
.

Coefficient on uki,j must be non-negative for stability[9]. Hence,

(1− 4∆tα) > 0,

so
∆t 6

1
4α .

2.2 Anisotrpic Diffusion Algorithm

2.2.1 Approximation of Dα

We use the 2-D discrete Fourier transform (2-D DFT) to compute the fractional-order
difference Dα. It is one important aspect of the algorithm that it considers the input
image as a periodic image, which is equivalent to imposing a period boundary condition
on1.7.

The discrete Fourier basis functions are defined on a square domain {0, ...,m − 1} ×
{0, ...,m− 1}, so we need not prolongate the discrete image in practical computations.

The first-order partial difference in the frequency domain is

D1
xu(x, y) =

∂u

∂x
(x, y)

' u(x, y) − u(x− ∆x, y)
∆x

' u(x, y) − u(x− 1, y)

↔
(
1− e−j2πw1/m

)
û (w1, w2) .

More generally, we define the fractional-order partial difference in the frequency domain

Dαxu↔
(
1− e−j2πw1/m

)α
û (w1, w2) α ∈ Z.

Now we use the central difference scheme to compute the fractional-order difference. This
is equivalent to translating Dαxu by α/2 units. Usually, α/2 is not an integer, the
trigonometric interpolation can be automatically implemented by the translation property
6 of the 2-D DFT, namely

F
{
u
(
x+

α

2 , y
)
;w1, w2

}
= e−jπ2w1·(−α

2 )/mû (w1, w2)

= ejπαw1/mû (w1, w2)
(2.1)
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where u is the continuous interpolated image by the trigonometric interpolation. Since
the formula 2.1 makes sense for all α/2 and not only for integer α/2, the continuous image
is unambiguously defined not just at integer x in the range 0 6 x < m, but in fact for all
real number x. Thus, we obtain the central difference

D̃αxu = Dαx

(
u
(
x+

α

2 , y
))

↔
(
1− e−j2πw1/m

)α × ejπαw1/mû (w1, w2) ,

we can also write

D̃αxu = F−1
((

1− e−j2πw1/m
)α × ejπαw1/mF(u)

)
α ∈ Z, (2.2)

where D̃αxu is the fractional-order partial difference.

Proposition 3. [10] When m is an odd integer, D̃αxu is real value.

Proof. Let

p (w1) = (1− e−j2πw1/m)α × ejπαw1/m, −
m− 1

2 6 w1 6
m− 1

2 .

Then we have
conj (p (−w1))

= conj
((

1− ej2πw1/m
)α
e−jπαw1/m

)
= conj

((
1− ej2πw1/m

)α)× conj
(
e−jπαw1/m

)
=
(
1− e−j2πw1/m

)α
ejπαw1/m

= p (w1)

where conj(·) is the complex conjugation1, so the function p (w1) is conjugate-symmetric
with respect to w1 = 0 . Thus, the matrix

p (w1) û (w1, w2) , −
m− 1

2 6 w1 6
m− 1

2 .

is conjugate-symmetric with respect to w1, w2 = 0, so we have

D̃αxu = F−1 (p (w1) û (w1, w2)) α ∈ Z,

is real value2. �

When m is an even integer , the domain of definition of the function p (w1) is not
symmetric with respect to w1 = 0. So usually, there is a complex component in D̃αxu.
However, when image size is enough large, this complex component is very small so that
it can be ignored in computations.

1conj(z1 = i) = −i, conj(z1 · z2) = conj(z1) conj(z2), z1, z2 ∈ C.
2conj(z) = z, if and only if z is real value, z ∈ C.
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2.2.2 Approximation of D∗α

Now we turn to compute the adjoint of D̃αx. Let K1 be a purely diagonal operator3 in
the frequency domain, defined by

K1 = diag
((

1− e−j2πw1/m
)α
ejπαw1/m

)
.

We get
D̃αx = F

−1 ◦ K1 ◦ F.

Let D̃∗αx be the adjoint of D̃αx, we get

D̃∗αx =
(
F−1 ◦ K1 ◦ F

)∗
= (K1 ◦ F)∗ ◦

(
F−1)∗

= F∗ ◦ K∗1 ◦
(
F−1)∗

= F−1 ◦ K∗1 ◦ F.

Since K1 is a purely diagonal operator, K∗1 is the complex conjugation of K1, we have

D̃∗αxu↔ conj
((

1− e−j2πw1/m
)α × ejπαw1/m

)
û (w1, w2) .

The same algorithm is used for calculations of D̃αy and D̃∗αy.

Proposition 4. [10] When α is an even integer, D̃αx and D̃αy are symmetric; when
α is an odd integer, D̃αx and D̃αy are anti-symmetric.

Proof. Let ε = −2πw1/m, then we have

K1 (w1, w1) = (1− ejε)αe−α
2 jε = (1+ (−ejε))αe−

α
2 jε

=

[
1+ α(−ejε) + α(α− 1)

2! (−ejε)2 + · · ·+ α(α− 1) · · · (α− n+ 1)
n! (−ejε)n

+O
(
(−ejε)n+1) ]× e−α

2 jε

=

α∑
r=0

(−1)rCrαe(jε)
r

e−
α
2 jε

Where Crα = α!
r!(α−r)! =

α(α−1)...(α−r+1)
r! and lim

x→0
O(x) = 0.

3A diagonal operator in the broad sense of the word is an operator D of multiplication by a complex
function λ in the direct integral of Hilbert spaces

H =

∫
M

⊕
H(t)dµ(t),

i.e.
(Df)(t) = λ(t)f(t), t ∈M, f ∈ H.
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• When α is an even integer (α = 2r), we have

(−1)rCrα = (−1)α−rCα−rα ,

so
K1(w1, w1)

=

α∑
r=0

(−1)rCrαejε(r−
α
2 ) = C

α
2
α(−1)α2

+

α
2 −1∑
r=0

(−1)rCrαejε(r−
α
2 ) +

α∑
r=α

2 +1

(−1)rCrαejε(r−
α
2 )

= C
α
2
α(−1)α2 +

α
2 −1∑
r=0

(−1)rCrα
(
ejε(r−

α
2 ) + ejε(

α
2 −r)

)

= C
α
2
α(−1)α2 + 2

α
2 −1∑
r=0

(−1)rCrα

(
ejε(

α
2 −r) + e−jε(

α
2 −r)

)
2

= C
α
2
α(−1)α2 + 2

α
2 −1∑
r=0

(−1)rCrα cos
(
ε
(α
2 − r

))
∈ R.

Thus, we have K∗1(w1, w2) = conj(K1(w1, w2)) = K1(w1, w2), so D̃∗αx = D̃αx. Thus
the symmetric.

• When α is an odd integer (α = 2r− 1), we have

(−1)rCrα = −(−1)α−rCα−rα ,

so
K1(w1, w1)

=

α∑
r=0

(−1)rCrαejε(r−
α
2 )

=

α−1
2∑
r=0

(−1)rCrαejε(r−
α
2 ) +

α∑
r=α+1

2

(−1)rCrαejε(r−
α
2 )

=

α−1
2∑
r=0

(−1)rCrα
(
ejε(r−

α
2 ) − ejε(

α
2 −r)

)

= −

α−1
2∑
r=0

(−1)rCrα
(
ejε(

α
2 −r) − ejε(r−

α
2 )
)

= −2j
α−1

2∑
r=0

(−1)rCrα

(
ejε(

α
2 −r) − e−jε(

α
2 −r)

)
2j

= −2j
α−1

2∑
r=0

(−1)rCrα sin
(
ε
(α
2 − r

))
∈ C.
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Thus, we have K∗1(w1, w2) = conj(K1(w1, w2)) = −K1(w1, w2), so D̃∗αx = −D̃αx.
Thus the anti-symmetric.

The same method is used to prove the symmetry of D̃αy. �

2.2.3 Numerical algorithm

Having algorithms of D̃αx and D̃∗αx, we can easily obtain our noise removal algorithm.
Let

g = D̃∗αx(c(|D̃αu|
2)D̃αxu) + D̃

∗
αy(c(|D̃αu|

2)D̃αyu),

where D̃αu =
(
D̃αxu, D̃αyu

)
, then

ĝ = K∗1 ◦ F(c(|D̃αu|2)D̃αxu) + K∗2 ◦ F((|D̃αu|2)D̃αyu),

where
K∗1 = diag

(
conj

(
(1− e−j2πw1/m)α × ejπαw1/m

))
,

K∗2 = diag
(
conj

(
(1− e−j2πw2/m)α × ejπαw2/m

))
.

We compute the evolution of the initial image u, along flow 1.7.

To summarize, our noise removal approach is done in following steps.

Algorithm 1 Anisotropic Diffusion algorithm
Input: u the input image. Output: û

1: Initialization: n = 1, un = u, k, ∆t, t = k∆t.
2: Compute the 2-D DFT ûn of un.
3: Compute α-order partial differences D̃αxun and D̃αyun using 2.2.
4: Compute hxn = c(|D̃αun|

2)D̃αxun and hyn = c(|D̃αun|
2)D̃αyun in the spatial

domain.
5: Compute ĝn = K∗1 ◦ F (hxn) + K∗2 ◦ F (hyn).
6: Compute ûn+1 = ûn − ĝn × ∆t.
7: if n = k then
8: Compute the 2-D IDFT of ûn.
9: n = n+ 1.
10: stop.
11: else go to 3:
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Figure 2.2: An image before and after applying the Anisotropic Diffusion algorithm.

When image size m is 512, the complex component is very small. If we want to eliminate
this small complex component, we can extend the observed image using the following
method

uo(x, y) = u(x, y), 0 6 x, y < m

uo(x,m) = u(x,m− 1), 0 6 x < m

uo(m,y) = u(m− 1, y), 0 6 y < m

uo(m,m) = u(m− 1,m− 1).

The size of the extended image uo is m + 1 = 513 which is an odd integer. Thus, the
complex component goes away in practical computations when applying the proposed
algorithm to uo.
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We present here the numerical results of the anisotropic diffusion equations based on the
minimization of energy E 1.5 for image denoising.

Four different images are used (Lena, Peppers, Clown and Sixteen) with size 256 × 256.
To generate the degraded images, we applied the operator Dα and added an additive
Gaussian noise σ (black and white) with the condition ∆t = 0.02.

The Gaussian filter g(x, y) = 1
2πσ2 · e−

x2+v2
2σ2 and evaluate the SNRdB = 20 log10

(
Asignal
Anoise

)
.

Table 3.1: The statistics of alpha and noise level that we add to the images.

Image alpha α G. noise σ
Lena {1, 1.2, 1.4, 1.6, 1.8, 2} {0.001, 0.002, 0.005}
Peppers {1, 1.2, 1.4, 1.6, 1.8, 2} {0.001, 0.002, 0.005}
Clown {1, 1.2, 1.4, 1.6, 1.8, 2} {0.001, 0.002, 0.005}
Sixteen {1, 1.2, 1.4, 1.6, 1.8, 2} {0.001, 0.002, 0.005}

Lena Peppers

Clown Sixteen

Figure 3.1: Original images.
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3.1 Experiment 1

In this experiment, we take c (s2) = exp
(
− s2

2λ2

)
, λ = 0.002 and k = 5.

Figure 3.2: From left to right and from top to bottom : Original image. Noised image with (σ = 0.002). First line :
Denoised image with α = 1, α = 1.2, α = 1.4, α = 1.6. Second line : α = 1.8, α = 2.
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Figure 3.3: From left to right and from top to bottom : Original image. Noised image with (σ = 0.001). First line :
Denoised image with α = 1, α = 1.2, α = 1.4, α = 1.6. Second line : α = 1.8, α = 2.

Figure 3.4: From left to right and from top to bottom : Original image. Noised image with (σ = 0.002). First line :
Denoised image with α = 1, α = 1.2, α = 1.4, α = 1.6. Second line : α = 1.8, α = 2.
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Figure 3.5: From left to right and from top to bottom : Original image. Noised image with (σ = 0.001). First line :
Denoised image with α = 1, α = 1.2, α = 1.4, α = 1.6. Second line : α = 1.8, α = 2.

Image Lena Peppers
α 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2
σ = 0.001 24.04 24.26 25.07 25.47 25.53 25.47 26.33 26.61 27.33 27.92 28.14 28.20
σ = 0.002 20.97 21.13 21.68 21.99 22.03 21.84 23.41 23.61 24.20 24.61 24.78 24.70
σ = 0.005 16.61 16.65 16.79 16.95 16.86 16.82 19.26 19.26 19.53 19.66 19.67 19.55
Image Clown Sixteen
α 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2
σ = 0.001 25.57 25.82 26.52 26.98 27.03 27.03 25.90 26.20 27.10 27.71 28.03 28.05
σ = 0.002 22.52 22.71 23.23 23.59 23.65 23.44 22.98 23.21 23.77 24.17 24.38 24.13
σ = 0.005 18.15 18.18 18.34 18.52 18.50 18.41 18.73 18.77 18.90 19.10 19.03 18.96

Table 3.2: SNR with different choices of α across three noise levels.

3.2 Experiment 2

In this next experiment, we compare anisotropic diffusion algorithm α = 3/2 = 1.5 with
the common Perona–Malik algorithm α = 1 in various iterations k.
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Figure 3.6: From left to right and from top to bottom : Original image. Noised image with (σ = 0.001). First line :
Denoised image α = 1 with k = 50, k = 20 , and α = 1.5 with the same values of k.

Figure 3.7: From left to right: Original image (enlargement of the Lena’s face), denoised image α = 1 (k = 20),
α = 1.5 (k = 20), and α = 2 (k = 20).
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Figure 3.8: From left to right and from top to bottom : Original image. Noised image with (σ = 0.002). First line :
Denoised image α = 1 with k = 50, k = 20 , and α = 1.5 with the same values of k.

Figure 3.9: From left to right: Original image (enlargement of the Clown’s face), denoised image α = 1 (k = 10),
α = 1.5 (k = 10), and α = 2 (k = 10).

Table 3.3: SNR with different choices of α across the noise level σ and k iterations.

Image Lena Clown
σ 0.001 0.002
α 1 1.5 1 1.5
k = 50 22.53 24.74 21.50 23.75
k = 20 23.98 25.28 22.50 23.52
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3.3 Experiment 3

Now, we compare the various results of the diffusion coefficient c1(s) = 1
1+s , c2(s

2) =
1

1+(x/λ)2 , c3 (s2) = exp
(
− s2

2λ2

)
, λ = 0.002 and k = 20.

Figure 3.10: From left to right and from top to bottom : Original image. Noised image with (σ = 0.002). First line :
Denoised image α = 1.5 with c1, SNR = 21.89dB, c2, SNR = 21.94dB, c3, SNR = 24.07dB.

Figure 3.11: From left to right and from top to bottom : Original image. Noised image with (σ = 0.005). First line :
Denoised image α = 1.5 with c1, SNR = 18.66dB, c2, SNR = 18.74dB, c3, SNR = 19.59dB.
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3.4 Discussion

We note that the proposed fractional-order pseudo-PDEs obtain better SNR and visual
effects. i.e. Notice the growing of SNR and almost the same while the α takes the non-
integer value, however, the SNR decreases with α = 1, α = 2.

We also note that the noninteger-order α = 1.2, 1.4, 1.6, 1.8 models make clear improve-
ments because the average is less sensitive to noise.

We intentionally choosed a large value for iteration number so that the smoothing effects
are easy to see. The images resulting from the second-order PDE α = 1 (Perona-Malik
equation) look “blocky” and produce false edges especially on Lena’s face. The denoised
images using the fourth-order PDE α = 2 contain speckle artifacts which are isolated
black and white speckles (see the lena’s face and exactly in clown’s hair). The images
resulting from the proposed third-order pseudo-PDE α = 1.5 look natural and do not
produce false edges. Speckle artifacts are also avoided.

In the experiment 3 we tested the application of three types diffusion coefficients c1, c2,
c3, that we noted the c3 which defined by a function exponential gives better result, clear
look, plus grow of SNR.

We may consider the best parameters as α = 1.5, σ = 0.001, c3 (s2) = exp
(
− s2

2λ2

)
, λ =

0.002, k = 20.

Figure 3.12: Best result SNR = 25.28dB.
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Conclusion

As a conclusion. This work included a mention of the relationship between fractional
derivation and image enhancement.

In a first chapter, we presented basic notions of fractional-order derivative (R-L, Caputo,
G-L derivatives). We also presented a class of fractional-order anisotropic diffusion mod-
els, like the second-order (Perona-Malik model) and fourth-order anisotropic diffusion
models.

In a second chapter, we give an iterative algorithm in the frequency domain using the
2-D DFT and apply it to image denoising. Although the use of the 2-D DFT leads to
consider the input image as a periodic image. The fractional derivative operator Dαu
= (Dαx, Dαy) can be take any type of three derivatives.

In a third chapter, through the some algorithm executions in Matlab, we cited the main
advantage of anisotropic diffusion algorithm is that the proposed pseudo-PDEs exhibit
higher perceptual quality than second-order and fourth-order PDEs. The second-order
PDE (α = 1) preserves edges but has the sometimes undesirable staircase effect, the
fourth-order PDE (α = 2) avoids the blocky effect but suffers from speckle artifacts,
the proposed third-order pseudo-PDE (α = 1.5) avoids the blocky effect and has no
speckle artifacts. Another advantage is that the noninteger-order anisotropic diffusion
can improve the SNR, however, the SNR cannot be improved if the integer-order models
are used.
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Appendix

The MATLAB code

1 %Ani so t rp i c D i f f u s i o n Algorithm .
2 c l e a r a l l ; c l c
3

4 %%
5 % I n i t i a l i z a t i o n .
6 alpha = 1 . 5 ;
7 dx = 1 ; dy = 1 ;
8 dt = 1 . / ( 4 . ^ alpha ) ;
9 %c = @(x ) 1./(1000.^10+x) ;

10 %c = @(x ) 1./(1+(x /0 .002) ^2) ;
11 c = @(x ) exp(−x .^2/2∗ ( 0 . 002 ) .^2 ) ;
12 %%
13 % 1) Input image : squared matrix .
14 u = imread ( ’ r i c e . png ’ ) ; %Input image u .
15 subplot ( 1 , 3 , 1 ) ; imshow (u) ; t i t l e ( ’ Or i g i na l image ’ ) ;
16 [m, ~ ] = s i z e (u) ;
17 u(m+1 , :) = u(m, : ) ; u ( : ,m+1) = u ( : ,m) ;
18 m=m+1;
19 ur e f = u ;
20 u = imnoise (u , ’ gauss ian ’ , 0 , 0 . 0 01 ) ;
21 x = dx ∗ 0 :m−1; y = dy ∗ 0 :m−1;
22

23 %%
24 %w1 = exp(−2∗pi ∗1 i . / x ) ; w2 = exp(−2∗pi ∗1 i . / y ) ;
25 w = −(m−1) / 2 : (m−1) /2 ;
26 w1 = repmat (w’ , 1 ,m) ;
27 w2 = repmat (w,m, 1 ) ;
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28

29 %%
30 K1 = diag ( conj ((1−exp(−1 i ∗2∗ pi ∗w/m) ) .^ alpha .∗ exp (1 i ∗ pi ∗alpha

∗w/m) ) ) ;
31 %K2 = diag ( conj ((1−exp(−1 i ∗2∗ pi ∗w/m) ) .^ alpha .∗ exp (1 i ∗ pi ∗alpha

∗w/m) ) ) ;
32 K2 = K1;
33

34 NIter = 20 ;
35 u0 = u ;
36 subplot ( 1 , 3 , 2 ) ; imshow (u0 ) ; t i t l e ( ’ Noisy image ’ ) ;
37 %2) Compute DFT of the image u .
38 Fu = f f t 2 ( u0 ) ; Fu = f f t s h i f t (Fu) ; %imagesc ( l og ( + abs (Fu) ) )
39 F i l t x = (1−exp(−1 i ∗2∗ pi ∗w1/m) ) . ^ ( alpha ) .∗ exp (1 i ∗ pi ∗alpha∗w1/m) ;
40 F i l t y = (1−exp(−1 i ∗2∗ pi ∗w2/m) ) . ^ ( alpha ) .∗ exp (1 i ∗ pi ∗alpha∗w2/m) ;
41 f o r i =1:NIter
42

43 %%
44 %3) Compute alpha−order p a r t i a l d i f f e r e n c e s .
45 D_alphaX=i f f t 2 ( i f f t s h i f t ( F i l t x .∗Fu) ) ;
46 D_alphaY=i f f t 2 ( i f f t s h i f t ( F i l t y .∗Fu) ) ;
47

48 %%
49 % 4) Compute hx , hy .
50 hx = c (D_alphaX .∗D_alphaX) .∗D_alphaX ;
51 hy = c (D_alphaY .∗D_alphaY) .∗D_alphaY ;
52

53 g = K1∗ f f t s h i f t ( f f t 2 ( hx ) ) + K2∗ f f t s h i f t ( f f t 2 (hy ) ) ;
54

55 Fu = Fu − g ∗ dt ;
56

57 v = i f f t 2 ( i f f t s h i f t (Fu) ) ; v = uint8 ( round (v ) ) ;
58 subplot ( 1 , 3 , 3 ) ; imshow (v ) ; t i t l e ( ’ Denoised image ’ ) ; drawnow ( ) ;
59

60 end
61 % Measure s i gna l−to−no i s e r a t i o (SNR) .
62 SNR = snr ( double ( u r e f ) , double ( u r e f )−double ( v ) ) ;
63 f p r i n t f ( ’ \n The SNR value i s %0.4 f \n ’ , SNR) ;
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Figure 13: SNR = 22.32dB.

40



Bibliography

[1] C. Canuto, A. Tabacco, Mathematical Analysis II, Springer-Verlag Italia, Milano 2008.

[2] J. B. Conway, A Course in Functional Analysis, second edition, Graduate texts in
mathematics 96, Springer-Verlag New York, Inc 1990.

[3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies 204, editor: Jan van Mill,
2006.

[4] S. Etemad, Sh. Rezapour, On a Two-Variables Fractional Partial Differential Inclusion
Via Riemann-Liouville Derivative, Novi Sad J. Math, Vol. 46, No. 2, 45-53, 2016.

[5] I. Podlubny, Y. Chen, Adjoint Fractional Differential Expressions and Operators,
DETC2007-35005, Las Vegas, Nevada, USA, September 4-7, 2007.

[6] S. Mallat, A Wavelet Tour of Signal Processing, October 9, 2008.

[7] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp. 629–639, Jul. 1990.

[8] Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise re-
moval,” IEEE Trans. Image Process., vol. 9, no. 10, pp. 1723–1730, Oct. 2000.

[9] D. M. Causon, C. G. Mingham, Introductory Finite Difference Methods for PDEs,
Ventus Publishing ApS ISBN 978-87-7681-642-1, 2010.

[10] J. Bai and X. C. Feng, “Fractional-order anisotropic diffusion for image denoising,”
IEEE Trans. Image Process., vol. 16, no. 10, pp. 2492–2502, 2007.

41



42


	List of Symbols
	Introduction
	Fractional-order anisotropic diffusion
	Reminders
	Fractional calculus
	Fourier transform
	Anisotropic diffusion

	Approximations and the numerical algorithm
	Discretizations of the problem
	Anisotrpic Diffusion Algorithm

	 Simulations: Evaluation and Comparison
	Experiment 1
	Experiment 2
	Experiment 3
	Discussion

	Conclusion

