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Abstract
This thesis deals with the BVP multi-point existence of nonlinear fractional di�erential equations

at resonance, where the kernel's dimension of the fractional di�erential operator is equal to one.

The main results are based on Mawhin's theory of coincidence.

Résumé
Ce mémoire traite l'existence de solution d'un problème aux limites à point multiple d'une équation

di�érentielle fractionnaire non linéaire à la résonance, où la dimension du noyau de l'opérateur

di�érentiel fractionnaire est égale à un. L'outil principal utilisé dans dans ce mémoire est basé

principalement sur la théorie de la coïncidence du degré dû à J.L. Mawhin.
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CONTENTS 1

Notations

X := Banach space.

Γ(·) := Euler's Gamma function.

B(·, ·) := Euler's Beta function.

Iαa := Riemann�Liouville Fractional Integral of Order α whereRe(α) > 0.

Dα
a := Riemann�Liouville Fractional Derivative of order α whereRe(α) > 0.

D =
d

dt
.

L1[0, 1] := {u : [0, 1]→ R is measurable on [0, 1] and

∫ 1

0

|u(t)|dt <∞}.

Ck[a, b] := {u : [0, 1]→ R; u has a continuous kth derivative, k ∈ N}.

C[a, b] := C0[a, b].

C(Ω) := {u : Ω ⊂ X → X; u is a continuous in Ω}.

Cα−1[0, 1] := {u(t)|u(t) = Iα−1
0+ x(t), x ∈ C[0, 1], t ∈ [0, 1],Re(α) > 0}.

u′(t0) =

(
dui
dtj

)
1≤i,j≤n

(t0);u ∈ C1(Ω).

Su := The set of critical points of u ∈ Ω.



Introduction

Fractional calculus developed since 17th century through the pioneering works of Leibniz, Euler,

Lagrange, Able, Liouville and many others deals with the generalization of di�erentiation and

integration to fractional order. In recent years the term fractional calculus refers to integration

and di�erentiation to an arbitrary order. Fractional di�erential equations have been of great

interest recently. It is caused both by the intensive development of the theory of fractional calculus

itself and by the applications of such constructions in various sciences such as physics, mechanics,

chemistry, engineering, etc.

Gaines and Mawhin introduced coincidence degree theory in 1970s in analyzing functional

and di�erential equations [4]. Mawhin has continued studies on this theory later and has made

so important contributions on this subject since then this theory is also known as Mahwin's

coincidence degree theory. Coincidence theory is a very powerful technique especially in existence

of solutions problems in nonlinear equations. It has especially so broad applications in the existence

of periodic solutions of nonlinear di�erential equations so that many researchers have used it for

their investigations [7].

The main goal in the coincidence degree theory is to search the existence of a solutions of the

operator equation

Lu = Nu (1)

in some bounded and open set Ω in some Banach space for L being a linear operator and N

nonlinear operator. In �nite dimensional case, for Ω ⊂ Rn, u ∈ C(Ω), and p ∈ Rn\u(∂Ω), the

degree of u on Ω with respect to p, d(u,Ω, p) is well de�ned. But unfortunately this is not the case

in in�nite dimension for u ∈ C(Ω).

Luckily, in an arbitrary Banach space X, Leray and Schauder proved that for Ω ∈ X open,

bounded set, M : Ω → X compact operator and for p ∈ X\(I −M)(∂Ω) the degree of compact

perturbation of identity I −M in Ω with respect to p, deg(I −M,Ω, p) is well de�ned. One of the

main useful properties of degree theory is that if deg(I −M,Ω, p) 6= 0 then (I −M)x = p has at

least one solution in Ω In particular if we take p = 0 and deg(I −M,Ω, p) 6= 0 then the compact

operator M has at least one �xed point in Ω.
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CONTENTS 3

In [4] Gaines and Mawhin studied existence of a solution of an operator equation (1) de�ned on a

Banach space X in an open bounded set Ω using the Leray-Schauder degree theory but since the

operator I − (L − N) is not compact in general the need to de�ne a compact operator M such

that its set of �xed points in Ω would be equal to a solution set of (1) in Ω.

In [4] the compact operator M is given and the coincidence degree for the couple (L,N) in Ω is

de�ned by deg[(L,N),Ω] = deg(I −M,Ω, 0).

The purpose of these thesis is to study the existence of solution to fractional boundary value

problems at resonance in Banach spaces. Our study is based upon the coincidence degree theory

of Mawhin.
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Theoretical and Basic Tools
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1.1. Preliminaries on the Fractional Calculation 5

1.1 Preliminaries on the Fractional Calculation

1.1.1 Gamma Function

One of the basic functions of the fractional calculus is Eulcr1's gamma function Γ, which generalizes

the factorial, n!.

De�nition 1.1.1 Gamma function (Γ) is de�ned as:

Γ(α) =

∫ ∞
0

e−ttα−1dt. (1.1)

Theorem 1.1.1 Function Γ(α) is convergent for Re(α) > 0.

Example 1.1.1 Evaluate Γ
(

1
2

)
by de�nition 1.1.1

Γ

(
1

2

)
=

∫ +∞

0

1√
t
e−tdt.

Since we have by using the substitution t = s2,

dt = 2sds,

where

Γ

(
1

2

)
=

∫ +∞

0

1

s
e−s

2

2sds

= 2

∫ +∞

0

e−s
2

ds.

Compute
[
Γ
(

1
2

)]2
, we �nd[

Γ

(
1

2

)]2

=

[
2

∫ +∞

0

e−s
2

ds

]2

=

[
2

∫ +∞

0

e−s
2

ds

] [
2

∫ +∞

0

e−z
2

dz

]
= 4

∫ +∞

0

∫ +∞

0

e−(z2+s2)dzds,

for  z = r cos θ

s = r sin θ
, r ∈

[
0,+∞

[
, θ ∈

[
0,
π

2

]
1Leonhard Euler (1707-1783) was a Swiss mathematician, physicist, astronomer, logician and engineer who

made important and in�uential discoveries in many branches of mathematics, such as in�nitesimal calculus and

graph theory, while also making pioneering contributions to several branches such as topology and analytic number

theory.
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we will have [
Γ

(
1

2

)]2

= 4

∫ π
2

θ=0

∫ +∞

r=0

e−r
2

rdrdθ

= 4

∫ π
2

0

[
−e
−r2

2

]+∞

0

dθ

= 4

[
−e
−r2

2

]+∞

0

∫ π
2

0

dθ

= π

⇒ Γ

(
1

2

)
=
√
π.

Some Properties of the Gamma Function

The basic properties of the Gamma function are:

1. The function Γ(α) obeys the property:

Γ(α + 1) = αΓ(α). (1.2)

Since we have

Γ(α + 1) =

∫ ∞
0

e−ttαdt = −
[
e−ttα

]∞
0

+ α

∫ ∞
0

e−ttα−1dt = αΓ(α). (1.3)

2. The following particular values for Γ function can be useful for calculation purposes:

Γ(n+ 1) = n!,

1

Γ(0)
= 0,

Γ

(
−1

2

)
= −2

√
π,

Γ

(
−3

2

)
=

4

3

√
π,

Γ

(
3

2

)
=

√
π

2
,

Γ

(
5

2

)
=

3
√
π

4
.

1.1.2 Beta Function

De�nition 1.1.2 The Beta function, or the �rst order Euler function, can be de�ned as:

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt,

where

Re(p) > 0 and Re(q) > 0.
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Some Properties of the Beta Function

The basic properties of the Beta function are:

1. For every Re(p) > 0 and Re(q) > 0, we have:

B(p, q) = B(q, p).

since we have by using the substitution t = 1− s

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt = −
∫ 0

1

(1− s)p−1sq−1ds =

∫ 1

0

sq−1(1− s)p−1ds = B(q, p).

2. For every Re(p) > 0 and Re(q) > 0, it is valid the identity:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

Since we use the de�nition 1.1.1 to obtain

Γ(p)Γ(q) =

∫ ∞
0

e−ttp−1dt

∫ ∞
0

e−ssq−1ds =

∫ ∞
0

∫ ∞
0

e−(t+s)tp−1sq−1dtds =

∫ ∞
0

∫ ∞
0

F (t, s)dtds.

Now we apply the change of variables t = xy = φ(x, y) and s = x(1 − y) = ψ(x, y) to this

double integral.

Note that t + s = x and that 0 < t < ∞ and 0 < s < ∞ imply that 0 < x < ∞ and

0 < y < 1.

The Jacobian of this transformation is

Jac =

∣∣∣∣∣∣
∂φ
∂x

∂φ
∂y

∂ψ
∂x

∂ψ
∂y

∣∣∣∣∣∣ =

∣∣∣∣∣∣ y x

1− y −x

∣∣∣∣∣∣ = −xy − x+ xy = −x.

Since x > 0 we conclude that

dtds = |Jac|dxdy = xdxdy.

Hence we have

Γ(p)Γ(q) =

∫ 1

0

∫ ∞
0

F (φ(x, y), ψ(x, y))|Jac|dxdy

=

∫ 1

0

∫ ∞
0

e−xxp−1yp−1xq−1(1− y)q−1xdxdy

=

∫ ∞
0

e−xxp+q−1dx

∫ 1

0

yp−1(1− y)q−1dy

= Γ(p+ q)B(p, q).
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1.1.3 Riemann�Liouville Di�erential and Integral Operators

De�nition 1.1.3 Let u be a continuous function, for every Re(α) > 0, the Riemann2�Liouville3

fractional integral of order α is de�ned:

Iαa u(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, −∞ ≤ a < t <∞. (1.4)

Example 1.1.2 We consider the function u de�ned by u(t) = (t− a)β and we will calculate their

integral of order α where Re(α) > 0,

Iαa (t− a)β =
1

Γ(α)

∫ t

a

(t− s)α−1(s− a)βds.

We assume the change s = a+ (t− a)τ we obtain:

ds = (t− a)dτ,

s = a =⇒ τ = 0,

s = t =⇒ τ = 1.

So

Iαa (t− a)β =
1

Γ(α)

∫ t

a

(t− a− (t− a)τ)α−1(a+ (t− a)τ − a)β(t− a)dτ

=
1

Γ(α)

∫ 1

0

(t− a)α−1(1− τ)α−1(t− a)βτβ(t− a)dτ

=
(t− a)α+β

Γ(α)

∫ 1

0

(1− τ)α−1τβdτ

=
Γ(α)Γ(β + 1)

Γ(α)Γ(α + β + 1)
(t− a)α+β

=
Γ(β + 1)

Γ(α + β + 1)
(t− a)α+β. (1.5)

Corollary 1.1.1 Let u be a continuous function of two variables (s, z), we have the next Dirichlet4

equality

∫ t

a

∫ s

a

u (s, z) dzds =

∫ t

a

∫ t

z

u (s, z) dsdz.

If u does not depend on s, but on z alone (see the integration area in Figure 1.1):∫ t

a

∫ s

a

u (z) dzds =

∫ t

a

∫ t

z

u (z) dsdz =

∫ t

a

u (z)

∫ t

z

dsdz

=

∫ t

a

u (z) (t− z) dz.

(1.6)

2B. Riemann (1826-1866) was a German mathematician who made contributions to analysis, number theory,

and di�erential geometry.
3J. Liouville (1809-1882) was a French mathematician known for his work in analysis, di�erential geometry, and

number theory.
4J.P.G.L. Dirichlet (1805�1859) was a German mathematician who made deep contributions to number theory,

and to the theory of Fourier series and other topics in mathematical analysis.
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When the inde�nite limit of integration comes �rst, (1.6) becomes (see the integration area in

Figure 1.1 ) ∫ a

t

∫ a

s

u (z) dzds =

∫ a

t

∫ z

t

u (z) dsdz =

∫ a

t

u (z)

∫ z

t

dsdz

=

∫ a

t

u (z) (z − t) dz.

(1.7)

Figure 1.1: Left: integration area of (1.6); right: integration area of (1.7)

Theorem 1.1.2 The exponents property:

Iαa I
β
a u(t) = Iα+β

a u(t).

Proof. For Re(α) > 0, Re(β) > 0, it results:

Iαa I
β
a u(t) =

1

Γ(α)

1

Γ(β)

∫ t

a

(t− s)α−1

∫ s

a

(s− z)β−1u(z)dzds.

If we apply the Dirichlet equality∫ t

a

∫ s

a

u(z)dzds =

∫ t

a

∫ t

z

u(z)dsdz,

we obtain:

Iαa I
β
a u(t) =

1

Γ(α)

1

Γ(β)

∫ t

a

∫ t

z

(t− s)α−1(s− z)β−1u(z)dsdz,

s = z + k(t− z),

ds = (t− z)dk, t− s = (1− k)(t− z),

Iαa I
β
a u(t) =

1

Γ(α)

1

Γ(β)

∫ t

a

(t− z)α+β−1u(z)

∫ 1

0

(1− k)α−1kβ−1dzdk,

but: ∫ 1

0

(1− k)α−1kβ−1ds = B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.
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Finally, it results:

Iαa I
β
a u(t) =

1

Γ(α + β)

∫ t

a

(t− z)α+β−1u(z)dz = Iα+β
a u(t).

De�nition 1.1.4 [2] Let Iα0+ (L1(0, 1)) , Re(α) > 0, denote the space of functions u, represented

by fractional integral of order α of a summable function: u = Iα0+v, v ∈ L1(0, 1) .

In the following Lemma, we use the uni�ed notation of both for fractional integrals and frac-

tional derivatives assuming that Iα0+ = Dα
0+ for Re(α) < 0.

Lemma 1.1.1 [2] The relation

Iα0+I
β
0+ϕ = Iα+β

0+ ϕ,

is valid in any of the following cases:

1. β ≥ 0, α + β ≥ 0, ϕ(t) ∈ L1(0, 1).

2. β ≤ 0, α ≥ 0, ϕ(t) ∈ I−β0+ (L1(0, 1)).

3. α ≤ 0, α + β ≤ 0, ϕ(t) ∈ I−α−β0+ (L1(0, 1)).

Theorem 1.1.3 Linearity property:

Iαa [C1f(t) + C2g(t)] = C1 I
α
a f(t) + C2 I

α
a g(t), (1.8)

where C1 and C2 are constants and f(t) and g(t) are functions.

Proof.

Iαa [C1f(t) + C2g(t)] =
1

Γ(α)

∫ t

a

(t− y)α−1 [C1f(y) + C2g(y)] dy

= C1
1

Γ(α)

∫ t

a

(t− y)α−1f(y)dy

+C2
1

Γ(α)

∫ t

a

(t− y)α−1g(y)dy

= C1 I
α
a f(t) + C2 I

α
a g(t).

De�nition 1.1.5 For every α, and n = [α] + 1 the Riemann�Liouville derivative of order α can

be de�ned as:

Dα
au(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1u(s)ds. (1.9)
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Example 1.1.3 We consider the function u de�ned by u(t) = (t− a)β and we will calculate their

fractional derivative of order α such that n = [α] + 1 by example (1.5) we get:

Dα
a (t− a)β =

(
d

dt

)n [
In−α(t− a)β

]
so

Dα
a (t− a)β =

(
d

dt

)n [
Γ(β + 1)

Γ(β + 1 + n− α)
(t− a)β+n−α

]
=

Γ(β + 1)

Γ(β + 1 + n− α)

(
d

dt

)n
(t− a)β+n−α

=
Γ(β + 1)

Γ(β + 1 + n− α)

Γ(β + n− α + 1)

Γ(β − α + 1)
(t− a)β−α

=
Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α.

Because(
d

dt

)n
(t− a)β+n−α = (β + n− α)(β + n− α− 1) . . . (β + n− α− (n− 1))(t− a)β−α

=
Γ(β + n− α + 1)

Γ(β − α + 1)
(x− a)β−α.

Remark 1.1.1 The Riemann-Liouvelle fractional integration and fractional di�erentiation opera-

tors of the power functions tβ yield power functions of the same form. For Re(α) ≥ 0, Re(β) > −1,

there are

Iα0+t
β =

Γ(β + 1)

Γ(β + α + 1)
tβ+α, Dα

0+t
β =

Γ(β + 1)

Γ(β − α + 1)
tβ−α.

Theorem 1.1.4 Linearity property:

Dα
a [C1f(t) + C2g(t)] = C1 D

α
a f(t) + C2 D

α
a g(t),

where C1 and C2 are constants and f(t) and g(t) are functions.

Proof. Since we have by using (1.8)

Dα
a [C1f(t) + C2e(t)] =

(
d

dt

)n (
In−αa [C1f(t) + C2g(t)]

)
=

(
d

dt

)n (
C1I

n−α
a f(t) + C2I

n−α
a g(t)

)
= C1

(
d

dt

)n
In−αa f(t) + C2

(
d

dt

)n
In−αa g(t)

= C1D
α
a f(t) + C2D

α
a g(t).
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Theorem 1.1.5 The following integration and derivation rules are valid:

(a)
d

dt
(Iαa u)(t) = (Iα−1

a u)(t), where Re(α) > 1.

(b) Dα
a (Iαa u)(t) = u(t), where Re(α) > 0.

(c) Iαa (Dα
au(t)) = u(t)−

∑n
j=1 [Dα−j

a u(t)]t=a
(t− a)α−j

Γ(α− j + 1)
, where Re(α) > 0, n ∈ N.

Proof.

(a) Since we have by using (1.2)(
d

dt

)
(Iαa u)(t) =

(
d

dt

)
1

(α− 1)Γ(α− 1)

∫ t

a

(t− s)α−1u(s)ds

=

(
d

dt

)
1

(α− 1)Γ(α− 1)

∫ +∞

0

(t− s)α−1u(s)1[a,t](s)ds

=
1

(α− 1)Γ(α− 1)

∫ +∞

0

(α− 1)(t− s)α−2u(s)1[a,t](s)ds

=
1

Γ(α− 1)

∫ t

a

(t− s)(α−1)−1u(s)ds

= (Iα−1
a u)(t).

(b) We need to consider the case of an integer α = n ≥ 1[(
RLDn

a ◦ Ina
)
u
]

(t) =

(
d

dx

)n
[(Ina u) (t)]

=

(
d

dt

)n [
1

(n− 1)!

∫ t

a

(t− s)n−1u(s)ds

]
=

d

dt

[
1

(n− 1)!

∫ t

a

(
d

dt

)n−1

(t− s)n−1u(s)ds

]

=
d

dt

[
1

(n− 1)!

∫ t

a

(n− 1)!u(s)ds

]
=

d

dt

∫ t

a

u(s)ds

= u(t).

We take now α ∈]n− 1, n[ we will have

[Dα
a (Iαa u)] (t) =

(
d

dt

)n [(
In−αa (Iαa u)

)
(t)
]

=

(
d

dt

)n
[(Ina f) (t)]

= u(t).

(c) We have

Iαa (Dα
au(t)) =

1

Γ(α)

∫ t

a

(t− s)α−1Dα
au(s)ds

=
d

dt

{
1

Γ(α + 1)

∫ t

a

(t− s)αDα
au(s)ds

}
.
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Where α ∈]n− 1, n[ and there is k ∈ N such that n = m+ k, so

1

Γ(α + 1)

∫ t

a

(t− s)αDα
au(s)ds =

1

Γ(α + 1)

∫ t

a

(t− s)α
(
d

ds

)m+k

Im+k−αu(s)ds

=
1

Γ(α + 1)

∫ t

a

(t− s)α
(
d

ds

)k
D−(k−α)
a u(s)ds

=
1

Γ(α− k + 1)

∫ t

a

(t− s)α−k{D−(k−α)
a u(s)}ds

−
k∑
j=1

[(
d

dt

)k−j
(D−(k−α)

a u(t))

]
t=a

(t− a)α−j+1

Γ(2 + α− j)

=
1

Γ(α− k + 1)

∫ t

a

(t− s)α−k{D−(k−α)
a u(s)}ds

−
k∑
j=1

[(
d

dt

)k−j (
d

dt

)m
Im+k−αu(t)

]
t=a

(t− a)α−j+1

Γ(2 + α− j)

=

(
d

dt

)n
1

Γ(n+ α− k + 1)

∫ t

a

(t− s)m+α−k{D−(k−α)
a u(s)}ds

−
k∑
j=1

[(
d

dt

)m+k−j

Im+k−j−(α−j)u(t)

]
t=a

(t− a)α−j+1

Γ(2 + α− j)

= D−(α−k+1)
a {D−(k−α)

a u(t)} −
k∑
j=1

[
Dα−ju(t)

]
t=a

(t− a)α−j+1

Γ(2 + α− j)

= D−1
a u(t)−

k∑
j=1

[
Dα−ju(s)

]
t=a

(t− a)α−j+1

Γ(2 + α− j)
.

Hence

Iαa (Dα
au(t)) =

d

dt

{
D−1
a u(t)−

k∑
j=1

[
Dα−ju(t)

]
t=a

(t− a)α−j+1

Γ(2 + α− j)

}

= u(t)−
k∑
j=1

[
Dα−j
a u(t)

]
t=a

(t− a)α−j

Γ(α− j + 1)
.

Lemma 1.1.2 For n = [α] + 1 and m ∈ N we have:

(DmDα
0+u)(t) = (Dα+m

0+ u)(t).

Proof.

(DmDα
0+u)(t) =

(
d

dt

)m(
d

dt

)n
In−αu(t)

=

(
d

dt

)m+n

In−m+m−αu(t)

= (Dα+m
0+ u)(t).
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1.2 Some functional Spaces

De�nition 1.2.1 A real Hilbert space X is a real Banach space associated with an inner product

〈·, ·〉 : X ×X → R with the following two properties:

• 〈u, v〉 is a bilinear form on X, that is, it is linear in u and in v;

• ‖u‖ =
√
〈u, u〉.

De�nition 1.2.2 A function u : [a, b] → R is said to be absolutely continuous on [a, b] if, given

ε > 0, there exists some δ > 0 such that

n∑
i=1

|u (t′i)− u (ti)| < ε,

whenever {[ti, t′i] : i = 1, . . . , n} is a �nite collection of mutually disjoint subintervals of [a, b] with

n∑
i=1

|t′i − ti| < δ.

Proposition 1.2.1 The following conditions on a real-valued function u on a compact interval

[a, b] are equivalent

1. u is absolutely continuous;

2. there exists a Lebesgue integrable function v on [a, b] such that

u(t) = u(a) +

∫ t

a

v(s)ds,

for all t in [a, b].

De�nition 1.2.3 [2] For n ∈ N , we denote by ACn[0, 1] The space u(t) which have continuous

derivatives up to order n− 1 on [0, 1] such that D(n−1)u(t) is absolutely continuous:

ACn[0, 1] =
{
u|[0, 1]→ R and

(
Dn−1u

)
(t) is absolutely continuous in [0, 1]

}
.

Lemma 1.2.1 Let α > 0, n = [α] + 1. Assume that u ∈ L1(0, 1) with a fractional integration of

order n− α that belongs to ACn[0, 1]. Then the equality

(
Iα0+D

α
0+u
)

(t) = u(t)−
n∑
k=1

((
In−α0+ u

)
(t)
)(n−k) |t = 0

Γ(α− k + 1)
tα−k

holds almost everywhere on [0, 1].

De�nition 1.2.4 [2] Given β > 0 and N = [β] + 1 we can de�ne a linear space

Cβ[0, 1] = {u(t)|u(t) = Iβ0+x(t) + c1t
β−1 + · · ·+ cN−1t

β−(N−1), x ∈ C[0, 1], t ∈ [0, 1]},

where ci ∈ R, i = 1, . . . , N − 1.
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Lemma 1.2.2 [2] Cβ[0, 1] is a Banach space with the norm

‖u‖Cβ =
∥∥∥Dβ

0+u
∥∥∥
∞

+ · · ·+
∥∥∥Dβ−(N−1)

0+ u
∥∥∥
∞

+ ‖u‖∞.

Lemma 1.2.3 [2] F ⊂ Cβ[0, 1] is a sequentially compact set if and only if F is uniformly bounded

and equicontinuous. Here uniformly bounded means there exists M > 0 such that for every u ∈ F

‖u‖Cβ =
∥∥∥Dβ

0+u
∥∥∥
∞

+ · · ·+
∥∥∥Dβ−(N−1)

0+ u
∥∥∥
∞

+ ‖u‖∞ < M,

and equicontinuous means that

∀ε > 0,∃δ > 0, for all t1, t2 ∈ [0, 1], |t1 − t2| < δ, u ∈ F, i ∈ {0, · · · , N − 1},

there hold

|u (t1)− u (t2)| < ε,
∣∣∣Dβ−i

0+ u (t1)−Dβ−i
0+ u (t2)

∣∣∣ < ε.

De�nition 1.2.5 [5] We de�ne the space C1(Ω) as follows: C1(Ω) = {u ∈ C(Ω) : u can be extended

to a function u on an open set Ω1 ⊃ Ω in such a way that u has continuous �rst-order partial

derivatives on Ω1}.

1.3 The Coincidence Degree Theory of Mawhin

1.3.1 Brouwer Degree

Let Ω ⊂ Rn be an open and bounded, u : Ω → Rn a function such that u ∈ C1(Ω) and p0 ∈ Rn.

We consider the following problem:

(P) Find t ∈ Ω, u(t) = p0.

Example 1.3.1 (n=1) Let Ω =]0, 1[ and u : Ω→ R be a function of class C1([0, 1]), satis�es the

following assumption

For all solution t of (P), u′(t) 6= 0.

We introduce the next integer

d (p0) =


∑

i∈I sgn (u′ (ti)) , if {ti, i ∈ I ⊂ N} is the set of solution of (P)

0, if the problem (P) has not solution.
(1.10)

Where, the integer d depends on the function u and the open set Ω.

We give illustrative examples.
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Figure 1.2

Figure 1.3

Remark 1.3.1

• If d(p0) 6= 0 the problem (P) admits at least one solution.

• If d(p0) = 0 the problem (P) may or may not admit a solution.

Continuous and Di�erentiable Functions

We begin with the following Bolzano's intermediate value theorem:

Theorem 1.3.1 Let u : [a, b] → R be a continuous function, then, for m between u(a) and u(b),

there exists t0 ∈ [a, b] such that u(t0) = m.

Corollary 1.3.1 Let u : [a, b]→ R be a continuous function such that u(a)u(b) < 0. Then there

exists t0 ∈ (a, b) such that u(t0) = 0.

Corollary 1.3.2 Let u : [a, b]→ [a, b] be a continuous function. Then there exists t0 ∈ [a, b] such

that u(t0) = t0.
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De�nition 1.3.1 Let Ω ⊂ Rn be an open subset. then a function u : Ω→ Rn is di�erentiable at

t0 ∈ Ω if there is a matrix u′(t0) such that

u (t0 + h) = u (t0) + u′(t0)h+ Θ(h), (1.11)

where t0 + h ∈ Ω and |Θ(h)|
|h| tends to zero as |h| → 0.

• If u ∈ C1(Ω) is di�erentiable at t0, we call

Ju (t0) = detu′(t0), (1.12)

the Jacobian of u at t0.

• If Ju (t0) = 0, then t0 is said to be a critical point of u. The set of all critical points of u in

Ω is denoted by Su(Ω), where

Su(Ω) = {t ∈ Ω : Ju(t) = 0} . (1.13)

Construction of Brouwer Degree

Let Ω ∈ Rn be open and bounded and u ∈ C1(Ω). If p /∈ u(∂Ω), then the Brouwer degree

deg(u,Ω, p) is a tool that describes the number of solutions for equation u(t) = p.

Theorem 1.3.2 [3] Let u ∈ C1(Ω), p ∈ Rn be given with p /∈ u(Su). Then the set u−1(p) is either

�nite or empty.

De�nition 1.3.2 [7] Let u ∈ C1(Ω), p ∈ Rn be given with p /∈ u(∂Ω), and p /∈ u(Su). The

Brouwer degree of u at p with respect to Ω, deg(u,Ω, p), is de�ned by

deg(u,Ω, p) =
∑

t∈u−1(p)

sgn Ju(t)

where deg(u,Ω, p) = 0 if u−1(p) = ∅.

Theorem 1.3.3 [5] If p ∈ Ω, then deg(I,Ω, p) = 1. If p /∈ Ω, then deg(I,Ω, p) = 0.

Example 1.3.2 Let Ω = B(0, 2) and

u(t) =
(
t31 − 1, t1 + 3t2

)
, t ∈ R2

For this function we have u−1((0, 0)) = {(1,−1/3)} and

u′(x) =

 3t21 0

1 3


Thus sgn Ju((1,−1/3) = 1 = deg (u,B(0, 2), 0).
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De�nition 1.3.3 [7] Let Ω ⊂ Rn be open and bounded and u ∈ C1(Ω). If p /∈ u(∂Ω), and

p /∈ u(Su). Then we de�ne

deg(u,Ω, p) = deg(v,Ω, p),

where v ∈ C1(Ω) and |v − u| < d(p, u(∂Ω)).

Theorem 1.3.4 [7] Let Ω ⊂ Rn be an open bounded subset and u : Ω → Rn be a continuous

mapping. If p /∈ u(∂Ω) then deg(u,Ω, p) satisfy the following properties:

1. (Solvability.) If deg(u,Ω, p) 6= 0, then u(t) = p has a solution in Ω.

2. (Homotopy). Let H(λ, ·) : [0, 1] × Ω → Rn be continuous and such that H(λ, t) 6= p,

λ ∈ [0, 1], t ∈ ∂Ω. Then deg (H(λ, ·),Ω, p) is a constant on λ ∈ [0, 1] .

3. (Additivity). Suppose that Ω1, Ω2 are two disjoint open subsets of Ω and p /∈ u
(
Ω− (Ω1 ∪ Ω2

)
).

Then

deg(u,Ω, p) = deg (u,Ω1, p) + deg (u,Ω2, p) .

Theorem 1.3.5 Let u : B(0, R) ⊂ Rn → B(0, R) be a continuous mapping. If |u(t)| ≤ R for all

t ∈ ∂B(0, R), then u has a �xed point in B(0, R).

Proof. We assume that t 6= u(t) for all t ∈ ∂B(0, R). Put

H(λ, t) = t− λu(t) for all (λ, t) ∈ [0, 1]×B(0, R).

Then

0 6= H(λ, t) for all [0, 1]× ∂B(0, R).

Where deg (H(λ, ·),Ω, 0) is a constant on λ ∈ [0, 1]. Therefore, we have

deg(H(λ, ·), B(0, R), 0) = deg(I − u,B(0, R), 0) = deg(I, B(0, R), 0) = 1.

Where

|u(t)| < d(0, I(∂B(0, R))) < d(0, ∂B(0, R)) 6 R.

Hence u has a �xed point in B(0, R).

Theorem 1.3.6 [7] Let C ⊂ Rn be a nonempty bounded closed convex subset and u : C → C be

a continuous mapping. Then u has a �xed point in C.

Theorem 1.3.7 (Borsuk's Theorem). let Ω ⊂ Rn be open bounded and symmetric with 0 ∈ Ω.

If u ∈ C(Ω) is odd and 0 /∈ u(∂Ω), then deg(u,Ω, 0) is odd.
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1.3.2 Leray-Schauder Degree

In 1934, Leray and Schauder generalized Brouwer degree theory to an infnite Banach space.

Lemma 1.3.1 Let X be a real Banach space, Ω ⊂ X be an open bounded subset and M : Ω→ X

be a continuous compact mapping without a �xed point in ∂Ω, so if ε > 0 such that ‖u−Mu‖ > 4ε

for all u ∈ ∂Ω. Then, for any ε > 0, there exist a �nite dimensional space Eε and a continuous

mapping Mε : Ω→ Eε such that

‖Mεu−Mu‖ 6 ε for all u ∈ Ω,

‖u−Mεu‖ > 3ε for all u ∈ ∂Ω.

We can de�ne the Leray-Schauder degree of I −M by the approximation Mε

De�nition 1.3.4 Let X be a Banach space, Ω ⊂ X be an open bounded set and M : Ω → X be

a continous compact mapping without a �xed point on ∂Ω, let ε > 0, Eε ⊂ X and Mε : Ω → Eε

given by lemma 1.3.1.

We consider F a �nite dimensional space containing Eε, such that ΩF = F ∩ Ω 6= ∅. We de�ne

the Leray-Schauder degree by

deg(I −M,Ω, p) := deg (IF −Mε,ΩF , p) ,

where p ∈ Eε.

Theorem 1.3.8 [5] Let p /∈ (I −M)(∂Ω). If deg(I −M,Ω, p) 6= 0, then there exists u0 ∈ Ω such

that (I −M)u0 = p.

Theorem 1.3.9 [7] The Leray-Schauder degree has the following properties:

1. (Normality). deg(I,Ω, 0) = 1 if and only if 0 ∈ Ω.

2. (Solvability). If deg(I −M,Ω, 0) 6= 0, then Mu = u has a solution in Ω.

3. (Homotopy). Let H(λ, u) : [0, 1]× Ω→ X be continuous compact and H(λ, u) 6= u for all

(λ, u) ∈ [0, 1]× ∂Ω. Then deg (I −H(λ, ·),Ω, 0) doesn't depend on λ ∈ [0, 1].

Lemma 1.3.2 [4] The Leray-Schauder degree of a linear isomorphism is equal to ±1.

1.3.3 On the Coincidence Degree Of Mawhin

Mawhin studied a class of mappings of the form L+N , where L is a Fredholm mapping of index

zero and N is a nonlinear mapping, which it called a L-compact mapping. These two concepts

will be discussed later.
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Algebraic Preliminaries

Let X and Z be two vector spaces, the domain of operator L, domL is a linear subspace of X,

and L : domL ⊂ X → Z is a linear operator. Assume that the operators

P : X → X, Q : Z → Z,

linear projection operators such that the chain

X
P→ domL

L→ Z
Q→ Z (1.14)

is exact, that is, ImP = KerL and ImL = KerQ.

Let us de�ne the restriction of L to domL ∩KerP as LP : domL ∩KerP → ImL.

Lemma 1.3.3 [2] LP is an algebraic isomorphism.

Now, let us de�ne KP := L−1
P , where KP : Im L ⊂ Z → dom L ∩ Ker P is one-to-one, onto, and

PKP = 0.

Lemma 1.3.4 [4]

1. On ImL, we have LKP = L(I − P )KP = LP (I − P )KP = I.

2. On domL, we have KPL = KPL(I − P ) = KPLp(I − P ) = (I − P ).

De�nition 1.3.5 Let z ∈ Z and Im(L) is a subspace of Z. Then z + Im(L) is the subset of Z

de�ned by

z + Im(L) = {z + z : z ∈ Im(L)}.

Example 1.3.3 Let Im(L) = {(x, 2x) ∈ R2 : x ∈ R} Then Im(L) is the line in R2 through the

origin with slope 2. Thus

(17, 20) + Im(L)

is the line in R2 that contains the point (17, 20) and has slope 2.

Figure 1.4
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De�nition 1.3.6

• An a�ne subset of Z is a subset of Z of the form z + Im(L) for some z ∈ Z and some

subspace Im(L) of Z.

• For z ∈ Z and Im(L) a subspace of Z, the a�ne subset z + Im(L) is said to be parallel to

Im(L).

Example 1.3.4 In Example 1.3.3 above, all the lines in R2 with slope 2 are parallel to Im(L).

De�nition 1.3.7 The cokernel of a linear mapping of vector spaces L : domL→ Z is the quotient

space Z/ Im(L) of the codomain of L by the image of L.

De�nition 1.3.8 Let Im(L) is a subspace of Z. Then the quotient space Z/ Im(L) is the set of

all a�ne subsets of Z parallel to Im(L). In other words,

CokerL = Z/ Im(L) = {z + Im(L) : z ∈ Z}.

Example 1.3.5 If Im(L) = {(x, 2x) ∈ R2 : x ∈ R} then R2/ ImL is the set of all lines in R2

that have slope 2.

De�nition 1.3.9 Let Im(L) is a subspace of Z. The canonic surjection operator Π is the linear

Π : Z → CokerL de�ned by

Π(z) = z + Im(L) for z ∈ Z.

De�nition 1.3.10 Let Z is �nite-dimensional and Im(L) is a subspace of Z. Then

dim CokerL = dimZ/ Im(L)) = dimZ − dim Im(L).

Lemma 1.3.5 [4] The canonic surjection operator Π is linear and Ker Π = KerQ.

Proposition 1.3.1 If there exists an one-to-one operator Λ : CokerL→ kerL, then

Lu = z, z ∈ Z (1.15)

will be equivalent to

(I − P )u = (ΛΠ +KP,Q) z. (1.16)

Here, the operator KP,Q : Z → X is de�ned as

KP,Q = KP (I −Q).
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Proof. Since ImL = kerQ = ker Π, then for z ∈ ImL we have Qz = 0 and ΛΠz = 0. From here,

it is seen that

Lu = z ⇐⇒ Lu = z −Qz

⇐⇒ KPLu = KP (z −Qz)

⇐⇒ (I − P )u = KP (I −Q)z

⇐⇒ (I − P )u = (ΛΠ +KP (I −Q)) z.

De�nition of Coincidence Degree for Some Linear Perturbations of Fredholm

Mappings

Let X and Z be two real Banach spaces, Ω ⊂ X an open, bounded subset of X and Ω an closure

of Ω. Let us assume that the operators

L : domL ⊂ X → Z, N : Ω ⊂ X → Z (1.17)

satisfy the following conditions:

(i) L is linear and ImL is an closed subset of Z.

(ii) KerL and CokerL = Z/ ImL are �nite dimensional spaces and dim kerL = dim CokerL.

(iii) the operator N : Ω ⊂ X → Z is continuous and ΠN(Ω) is bounded.

(iv) the operator KP,QN : Ω→ Z is compact on Ω.

De�nition 1.3.11 The operator L which satis�es the conditions (i) and (ii) will be called as

Fredholm operator of index zero.

De�nition 1.3.12 The operator N : Ω → Z which satis�es the conditions (iii) and (iv) will be

called L-compact operator.

Theorem 1.3.10 [8] Let Z be a Banach space. If the operator L is a Fredholm operator of index

zero then there exist continuous projections P : X → X and Q : Z → Z such that the chain

X
P→ domL

L→ Z
Q→ Z (1.18)

will be exact.
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Proposition 1.3.2 [8] The element u ∈ domL ∩ Ω is a solution of the operator equation (1) if

and only if it satis�es

(I − P )u = (ΛΠ +KP,Q)Nu. (1.19)

In other words, the set of solutions of (1) is equal to the set of �xed points of the operator M :

Ω→ X de�ned by

M = P + (ΛΠ +KP,Q)N. (1.20)

Here, Λ : CokerL→ kerL is any isomorphism.

Proposition 1.3.3 [2] Assume that the conditions (i)�(iv) hold. Then, the operatorM is compact

on Ω.

Lemma 1.3.6 [4] If 0 /∈ (L − N)(DomL ∩ ∂Ω) then the Leray-Schauder degree (I −M,Ω, 0) is

well de�ned.

De�nition 1.3.13 [4] If the operators L and N satisfy the conditions (i)− (iv) and Lemma 1.3.6

then the coincidence degree of L and N in Ω de�ned by

deg((L,N),Ω) = deg(I −M,Ω, 0). (1.21)

Theorem 1.3.11 [8] Assume that the conditions (i) to (iv) and Lemma 1.3.6 are satis�ed. Then

coincidence degree satis�es the following basic properties.

1. (Existence theorem). If deg[(L,N),Ω] 6= 0, then 0 ∈ (L−N)(domL ∩ Ω).

2. (Excision property). If Ω0 ∈ Ω is an open set such that (L−N)−1(0) ∈ Ω0, then

deg[(L,N),Ω] = deg [(L,N),Ω0] . (1.22)

3. (Additivity property). If Ω = Ω1 ∪Ω2 with Ω1 and Ω2 are open, bounded, disjoint subsets

of X, then

deg[(L,N),Ω] = deg [(L,N),Ω1] + deg [(L,N),Ω2] . (1.23)

4. (Invariance under homotopy property). If the operator

Ñ : Ω× [0, 1]→ Z

(u, λ) 7−→ Ñ(u, λ)
(1.24)

is L−compact in Ω× [0, 1] and such that for each λ ∈ [0, 1], 0 /∈ [L− Ñ(·, λ)](domL∩ ∂Ω),

then coincidence degree deg[(L,N(·, λ)),Ω], is independent of λ in [0, 1]. In particular

deg[(L,N(·, 1)),Ω] = deg[(L,N(·, 0)),Ω]. (1.25)
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Theorem 1.3.12 [4] (Mawhin's theory of coincidence). Let L be a Fredholm operator of

index zero and let N be L−compact on Ω. Assume that the following conditions are satis�ed:

(i) Lu 6= λNu for every (u, λ) ∈ [(domL \KerL) ∩ ∂Ω)]× (0, 1).

(ii) Nu /∈ ImL for every u ∈ KerL ∩ ∂Ω.

(iii) deg(QN|KerL,Ω ∩ KerL, 0) 6= 0,

where Q : X → X is a projection as above with ImL = KerQ. Then the equation Lu = Nu

has at least one solution in domL ∩ Ω.
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2.1 Motivation

Let X and Z be two Banach spaces. Consider the operators

L : X → Z, N : X → Z.

where L being a linear operator and N nonlinear operator. Let the operator equation

Lu = Nu. (2.1)

We can write the fractional boundary value problems with the form (2.1). If L is invertible, or

KerL = {0}, (2.1) is called non-resonant problem. Otherwise, if KerL is not a trivial space, then

it is called resonant problem.

Example 2.1.1 (Non-resonant case). We de�ne the boundary value problem at non-resonance

as

Dα
0+u(t) = f (t, u(t)) , 0 ≤ t ≤ 1

Dα−1u(0) = Dα−2u(1) = 0, u(1) = 0
. (2.2)

Where 2 < α 6 3. Let X = C([0, 1],R), with the norm ‖u‖∞.

• De�ne L to be the linear operator from X to X as

Lu = Dα
0+u, u ∈ X.

Thus Ker(L) = {0}.

Example 2.1.2 (Resonant case). We de�ne the boundary value problem at resonance as

Dα
0+u(t) = f (t, u(t), Du(t)) , 0 < t < 1

I2−α
0+ u (t)|t=0 = 0, βu(µ) = u(1)

. (2.3)

where 1 < α 6 2, 0 < µ < 1, and β ∈ R. Let

Z = L1[0, 1], X = Cα−1[0, 1]

with the norm

‖u‖Cα−1 =
∥∥Dα−1

0+ u
∥∥
∞ + ‖u‖∞.

Then X is a Banach space.

• De�ne L to be the linear operator from dom(L) ∩X to Z with

dom(L) =
{
u ∈ Cα−1[0, 1]

|Dα
0+u ∈ L1(0, 1), Dα−2

0+ u(0) = 0, βu(µ) = u(1)},

and

Lu = Dα
0+u, u ∈ dom(L).

Thus Ker(L) = {ctα−1|c ∈ R}.
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2.2 Application with the Coincidence Degree of Mawhin

In this section, the following fractional order ordinary di�erential equation boundary value prob-

lem:

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)

+ e(t), 0 ≤ t ≤ 1

I2−α
0+ u (t)|t=0 = 0, Dα−1

0+ u(1) =
∑m−2

i=1 βiD
α−1
0+ u (ηi) .

(2.4)

is considered, where 1 < α 6 2, is a real number, f : [0, 1]×R2 → R is continuous and e ∈ L1[0, 1],

and ηi ∈ (0, 1), are given constants such that
∑m−2

i=1 βi = 1.

By using the coincidence degree theory, some existence results of solutions are established.

2.2.1 Existence Result

Here, we always suppose that 1 < α ≤ 2 is a real number and
∑m−2

i=1 βi = 1.

Let

Z = L1[0, 1], X = Cα−1[0, 1]

with the norm

‖u‖Cα−1 =
∥∥Dα−1

0+ u
∥∥
∞ + ‖u‖∞.

Then X is a Banach space.

Given a function u such that

Dα
0+u = f(t) ∈ L1(0, 1) and I2−α

0+ u (t)|t=0 = 0.

There holds u ∈ Cα−1[0, 1]. In fact, with lemma 1.2.1, one has

u(t) = Iα0+f(t) + c1t
α−1 + c2t

α−2.

Where

c1 =
((I2−α

0+ u)(t)) ′|t=0

Γ(α)
, c2 =

I2−α
0+ u (t)|t=0

Γ(α− 1)
.

Combine with I2−α
0+ u (t)|t=0 = 0 there is c2 = 0. So,

u(t) = Iα0+f(t) + c1t
α−1

= Iα0+f(t) + Iα−1
0+ c1Γ(α)

= Iα−1
0+

[
I1

0+f(t) + c1Γ(α)
]
.

Because

Iα−1
0+ c1Γ(α) =

c1Γ(α)

Γ(α− 1)

∫ t

0

(t− s)α−2ds

=
c1Γ(α)

(α− 1)Γ(α− 1)
(t− s) (α−1)

∣∣t
0

= c1t
α−1.
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Thus u ∈ Cα−1[0, 1].

• De�ne L to be the linear operator from dom(L) ∩X to Z with

dom(L) =
{
u ∈ Cα−1[0, 1]

|Dα
0+u ∈ L1(0, 1), I2−α

0+ u(0) = 0, Dα−1
0+ u(1) =

m−2∑
i=1

βiD
α−1
0+ u (ηi)},

and

Lu = Dα
0+u, u ∈ dom(L). (2.5)

• De�ne N : X → Z by

Nu(t) = f
(
t, u(t), Dα−1

0+ u(t)
)

+ e(t), t ∈ [0, 1].

Then boundary value problem (2.4) can be written as

Lu = Nu.

Lemma 2.2.1 Let L be de�ned as (2.5), then

Ker(L) =
{
ctα−1|c ∈ R

}
(2.6)

and

Im(L) =

{
y ∈ Z|

m−2∑
i=1

βi

∫ 1

ηi

y(s)ds = 0

}
. (2.7)

Proof.

• By Lemma 1.2.1, Lemma 1.1.1, Dα
0+u(t) = 0 has solution,

Dα
0+u(t) = 0.

Iα0+D
α
0+u(t) = 0.

u(t) =

(
I2−α

0+ u(t)
)′∣∣∣

t=0

Γ(α)
tα−1 +

I2−α
0+ u (t)|t=0

Γ(α− 1)
tα−2

=

(
d
dx

)2
I

2−(α−1)
0+ u (t)|t=0

Γ(α)
tα−1 +

I2−α
0+ u (t)|t=0

Γ(α− 1)
tα−2

=
Dα−1

0+ u (t)|t=0

Γ(α)
tα−1 +

I2−α
0+ u (t)|t=0

Γ(α− 1)
tα−2.

Combine with I2−α
0+ u (t)|t=0 = 0. So

u(t) = ctα−1,
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where

c =
Dα−1

0+ u (t)|t=0

Γ(α)
.

Hence

Ker(L) =
{
ctα−1|c ∈ R

}
.

• Assume that y ∈ Im (L), where

Im (L) =
{
y ∈ Z| y = Dα

0+u(t) for some u ∈ dom (L)
}
.

Since y ∈ Im (L), there exists a function u ∈ dom (L) such that y(t) = Dα
0+u(t). Then we

have

Iα0+y(t) = u(t)− c1t
α−1 − c2t

α−2

where

c1 =
Dα−1

0+ u (t)|t=0

Γ(α)
, c2 =

I2−α
0+ u (t)|t=0

Γ(α− 1)
.

By the boundary condition I2−α
0+ u (t)|t=0, one has c2 = 0. So,

u(t) = Iα0+y(t) + c1t
α−1

and by lemma 1.1.1.

Dα−1
0+ u(t) = Dα−1

0+ Iα0+y(t) +Dα−1
0+ (c1t

α−1)

=

(
d

dx

)2

I
2−(α−1)
0+ Iα0+y(t) + c1Γ(α)

= I1−α
0+ Iα0+y(t) + c1Γ(α)

= I1
0+y(t) + c1Γ(α).

Where, for t = 1.

c1Γ(α) = Dα−1
0+ u(1)− I1

0+y(1).

In view of the condition Dα−1
0+ u(1) =

∑m−2
i=1 βiD

α−1
0+ u (ηi), we have

Dα−1
0+ u(1) =

m−2∑
i=1

βiD
α−1
0+ u (ηi)

=
m−2∑
i=1

βi
{
I1

0+y(ηi) +Dα−1
0+ u(1)− I1

0+y(1)
}

=
m−2∑
i=1

βi
(
I1

0+y(ηi)− I1
0+y(1)

)
+

m−2∑
i=1

βiD
α−1
0+ u(1)

=
m−2∑
i=1

βi
(
I1

0+y(ηi)− I1
0+y(1)

)
+Dα−1

0+ u(1)
m−2∑
i=1

βi

=
m−2∑
i=1

βi
(
I1

0+y(ηi)− I1
0+y(1)

)
+Dα−1

0+ u(1)
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it is equal to

m−2∑
i=1

βi
(
I1

0+y(ηi)− I1
0+y(1)

)
= 0 ⇒

m−2∑
i=1

βi

(∫ ηi

0

y(s)ds−
∫ 1

0

y(s)ds

)
= 0

⇒
m−2∑
i=1

βi −
(∫ 0

ηi

y(s)ds+

∫ 1

0

y(s)ds

)
= 0

⇒
m−2∑
i=1

βi

∫ 1

ηi

y(s)ds = 0.

thus, we obtain (2.7).

On the other hand, suppose y ∈ Z and satis�es:

m−2∑
i=1

βi

∫ 1

ηi

y(s)ds = 0.

Let u(t) = Iα0+y(t), then we have

Dα
0+u(t) = Dα

0+I
α
0+y(t)

= y(t)

thus Dα
0+u(t) ∈ L1(0, 1). And

I2−α
0+ u(0) = I2−α

0+ Iα0+y(0)

= 0.

In fact, with Dα−1
0+ u(t) = I1

0+y(t), one has Dα−1
0+ u(1) =

∑m−2
i=1 βiD

α−1
0+ u (ηi), where

Dα−1
0+ u(1) =

m−2∑
i=1

βiD
α−1
0+ u (ηi)

=
m−2∑
i=1

βiI
1
0+y(ηi)

=
m−2∑
i=1

βi

∫ ηi

0

y(s)ds

=
m−2∑
i=1

βi

(∫ 1

0

y(s)ds+

∫ ηi

1

y(s)ds

)

=
m−2∑
i=1

βi

(∫ 1

0

y(s)ds−
∫ 1

ηi

y(s)ds

)

=
m−2∑
i=1

βi

∫ 1

0

y(s)ds−
m−2∑
i=1

βi

∫ 1

ηi

y(s)ds

=

∫ 1

0

y(s)ds
m−2∑
i=1

βi

= I1
0+y(1).

Therefore, u ∈ dom(L) and Dα
0+u(t) = y(t). So, y ∈ Im(L).
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Lemma 2.2.2 There exist k ∈ {0, 1, · · · ,m− 2} satis�es

m−2∑
i=1

βiη
k+1
i 6= 1

Proof. Suppose it is not true, for any k ∈ N we have

m−2∑
i=1

βiη
k+1
i = 1.

that means 
η1 η2 · · · ηm−2

η2
1 η2

2 · · · η2
m−2

...
...

. . .
...

ηm−2
1 ηm−2

2 . . . ηm−2
m−2




β1

β2

...

βm−2

 =


1

1
...

1


it is equal to

β1η1 + β2η2 + . . .+ βm−2ηm−2 = 1

β1η
2
1 + β2η

2
2 + . . .+ βm−2η

2
m−2 = 1

...

β1η
m−2
1 + β2η

m−2
2 + . . .+ βm−2η

m−2
m−2 = 1

β1η
m−1
1 + β2η

m−1
2 + . . .+ βm−2η

m−1
m−2 = 1

⇔



β1η1 + β2η2 + . . .+ βm−2ηm−2 − 1 = 0

β1η
2
1 + β2η

2
2 + . . .+ βm−2η

2
m−2 − 1 = 0

...

β1η
m−2
1 + β2η

m−2
2 + . . .+ βm−2η

m−2
m−2 − 1 = 0

β1η
m−1
1 + β2η

m−1
2 + . . .+ βm−2η

m−1
m−2 − 1 = 0

it is equal to 

η1 η2 · · · ηm−2 1

η2
1 η2

2 · · · η2
m−2 1

...
...

. . .
...

ηm−2
1 ηm−2

2 . . . ηm−2
m−2 1

ηm−1
1 ηm−1

2 · · · ηm−1
m−2 1





β1

β2

...

βm−2

−1


=



0

0
...

0

0


it is equal to 

1 η1 · · · ηm−3 ηm−2

1 η2
1 · · · η2

m−3 η2
m−2

...
...

. . .
...

1 ηm−2
1 . . . ηm−2

m−3 ηm−2
m−2

1 ηm−1
1 · · · ηm−1

m−2 ηm−1
m−2





−1

β1

...

βm−3

βm−2


=



0

0
...

0

0


.

In fact, with the Vandermonde Determinant is not equal to zero and it is invertible, one has
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Vm−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 η1 · · · ηm−3 ηm−2

1 η2
1 · · · η2

m−3 η2
m−2

...
...

. . .
...

1 ηm−2
1 . . . ηm−2

m−3 ηm−2
m−2

1 ηm−1
1 · · · ηm−1

m−2 ηm−1
m−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 η1 η2 · · · ηm−2

1− η1 0 η2(η2 − η1) · · · ηm−2(ηm−2 − η1)
...

...
...

1− η1 0 ηm−3
2 (η2 − η1) . . . ηm−3

m−2(ηm−2 − η1)

1− η1 0 ηm−2
2 (η2 − η1) · · · ηm−2

m−2(ηm−2 − η1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= η1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 η2 · · · ηm−2

1− η1 η2(η2 − η1) · · · ηm−2(ηm−2 − η1)
...

...
...

1− η1 ηm−3
2 (η2 − η1) . . . ηm−3

m−2(ηm−2 − η1)

1− η1 ηm−2
2 (η2 − η1) · · · ηm−2

m−2(ηm−2 − η1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= η1(1− η1)(η2 − η1) · · · (ηm−2 − η1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 η2 · · · ηm−2

1 η2 · · · ηm−2

...
...

...

1 ηm−3
2 . . . ηm−3

m−2

1 ηm−2
2 · · · ηm−2

m−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= η1(1− η1)(η2 − η1) · · · (ηm−2 − η1)Vm−2

= η1(1− η1)(η2 − η1) · · · (ηm−2 − η1)[η2(1− η2)(η3 − η2) · · · (ηm−2 − η2)]Vm−3

=
∏

1≤i,j≤m−2

ηj(1− ηj)(ηi − ηj).

Hence 

−1

β1

...

βm−3

βm−2


=



0

0
...

0

0


(2.8)

there is a contradiction.
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Lemma 2.2.3 [2] L : dom(L) ∩X → Z is a Fredholm operator of index zero. Furthermore, the

linear continuous projector operators Q : Z → Z and P : X → X can be de�ned by

Qu = Cut
k, for every u ∈ Z.

Pu(t) = Dα−1
0+ u (t)|t=0 t

α−1, for every u ∈ X,

where

Cu =

∑m−2
i=1 βi

∫ 1

ηi
u(s)ds

(k + 1)
(
1−

∑m−2
i=1 βiη

k+1
i

) .
Here k ∈ {0, 1, · · · ,m− 2} satis�es

∑m−2
i=1 βiη

k+1
i 6= 1. And the linear operator

KP : Im(L)→ dom(L) ∩Ker(P )

can be written by

KP (y) = Iα0+y(t).

Furthermore

‖KP (y)‖Cα−1 ≤
(

1 +
1

Γ(α)

)
‖y‖1, for all y ∈ Im(L).

Lemma 2.2.4 [2] For given e ∈ L1[0, 1], KP (I −Q)N : X → X is completely continuous.

Theorem 2.2.1 Let f : [0, 1]× R2 → R be continuous. Assume that

(A1) There exists functions a, b, c, r ∈ L1[0, 1], and constant θ ∈ [0, 1) such that for all

(x, y) ∈ R2, t ∈ [0, 1] either

|f(t, x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)|y|θ + r(t). (2.9)

Or else

|f(t, x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)|x|θ + r(t). (2.10)

(A2) There exists constant M > 0 such that for u ∈ dom(L), if
∣∣Dα−1

0+ u(t)
∣∣ > M for all t ∈ [0, 1],

then
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, u(s), Dα−1

0+ u(s)
)

+ e(s)
]
ds 6= 0.

(A3) There exists M∗ > 0 such that for any c ∈ R, if |c| > M∗ then either

c

(
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, csα−1, cΓ(α)

)
+ e(s)

]
ds

)
< 0.

Or else

c

(
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, csα−1, cΓ(α)

)
+ e(s)

]
ds

)
> 0.
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Then, for every e ∈ L1[0, 1], the boundary value problem (2.4), has at least one solution in

Cα−1[0, 1] provided that

‖a‖1 + ‖b‖1 <
1

C
,

where C = Γ(α) + 2 + 1
Γ(α)

.

Proof. Let

Ω1 = {u ∈ dom(L)\Ker(L)|Lu = λNu for some λ ∈ (0, 1)}.

Then for u ∈ Ω1, Lu = λNu, and Nu ∈ Im(L), hence

m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, u(s), Dα−1

0+ u(s)
)

+ e(s)
]
ds = 0.

Thus, from (A2), there exists t0 ∈ [0, 1] such that
∣∣Dα−1

0+ u(t)
∣∣
t=t0
| ≤ M . For u ∈ Ω1, there holds

Dα−1
0+ u ∈ Cα−1[0, 1], Dα

0+u ∈ (L1(0, 1)).

By Lemma 1.1.2.

DDα−1
0+ u(t) = Dα

0+u(t).

So,

Dα−1
0+ u (t)|t=0 = Dα−1

0+ u(t)− I1
0+D

α
0+u(t).

There exists t0 ∈ [0, 1] such that

Dα−1
0+ u (t)|t=0 = Dα−1

0+ u (t)|t=t0 − I
1
0+D

α
0+u (t)|t=t0

Thus,

∣∣Dα−1
0+ u(t)

∣∣
t=0
| ≤ M +

∥∥Dα
0+u(t)

∥∥
1

≤ M + ‖Lu‖1

≤ M + ‖Nu‖1. (2.11)

Again for u ∈ Ω1, u ∈ dom(L)\Ker(L), then (I − P )u ∈ dom(L) ∩Ker(P ) and LPu = 0.

Thus from Lemma 2.2.3 , we have

‖(I − P )u‖Cα−1 = ‖KPL(I − P )u‖Cα−1

6

(
1 +

1

Γ(α)

)
‖L(I − P )u‖1

=

(
1 +

1

Γ(α)

)
‖Lu‖1

6

(
1 +

1

Γ(α)

)
‖Nu‖1. (2.12)
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From (2.11), (2.12), we have

‖u‖Cα−1 ≤ ‖Pu‖Cα−1 + ‖(I − P )u‖Cα−1

= ‖Dα−1
0+ Pu‖∞ + ‖Pu‖∞ + ‖(I − P )u‖Cα−1

= (Γ(α) + 1)
∣∣Dα−1

0+ u(t)
∣∣
t=0
|+ ‖(I − P )u‖Cα−1

≤ (Γ(α) + 1) (M + ‖Nu‖1) +

(
1 +

1

Γ(α)

)
‖Nu‖1

= (Γ(α) + 1)M +

(
Γ(α) + 2 +

1

Γ(α)

)
‖Nu‖1

= (Γ(α) + 1)M + C‖Nu‖1. (2.13)

Where

C = Γ(α) + 2 +
1

Γ(α)
,

and

|Nu| = |f
(
t, u(t), Dα−1

0+ u(t)
)

+ e(t)|

≤ |f
(
t, u(t), Dα−1

0+ u(t)
)
|+ |e(t)|

≤ a(t)|u(t)|+ b(t)|Dα−1
0+ u(t)|+ c(t)|Dα−1

0+ u(t)|θ + r(t) + |e(t)|

≤ a(t)‖u(t)‖∞ + b(t)‖Dα−1
0+ u(t)‖∞ + c(t)‖Dα−1

0+ u(t)‖θ∞ + r(t) + |e(t)|.

If (2.9) holds, then from (2.13), we get

‖u‖Cα−1 ≤ C
[
‖a‖1‖u‖∞ + ‖b‖1

∥∥Dα−1
0+ u

∥∥
∞ + ‖c‖1

∥∥Dα−1
0+ u

∥∥θ
∞ + ‖r‖1 + ‖e‖1

]
+ (Γ(α) + 1)M.

(2.14)

Thus, from ‖u‖∞ ≤ ‖u‖Cα−1 and (2.14), we obtain

‖u‖∞ ≤
C

1− C‖a‖1

[
‖b‖1

∥∥Dα−1
0+ u

∥∥
∞ + ‖c‖1

∥∥Dα−1
0+ u

∥∥θ
∞ + ‖r‖1 + ‖e‖1 +

(Γ(α) + 1)M

C

]
. (2.15)

Again, from (2.14), (2.15), one has

‖Dα−1
0+ u‖∞ ≤ C

[
‖a‖1‖u‖∞ + ‖b‖1

∥∥Dα−1
0+ u

∥∥
∞ + ‖c‖1

∥∥Dα−1
0+ u

∥∥θ
∞ + ‖r‖1 + ‖e‖1

]
+ (Γ(α) + 1)M.

≤ +
C

1− C‖a‖1

‖b‖1

∥∥Dα−1
0+ u

∥∥
∞ +

C

1− C‖a‖1

‖c‖1

∥∥Dα−1
0+ u

∥∥θ
∞

+
C

1− C‖a‖1

[
‖r‖1 + ‖e‖1 +

(Γ(α) + 1)M

C

]
.

Hence

∥∥Dα−1
0+ u

∥∥
∞ ≤

C‖c‖1

1− C (‖a‖1 + ‖b‖1)

∥∥Dα−1
0+ u

∥∥θ
∞+

C

1− C (‖a‖1 + ‖b‖1)

[
‖r‖1 + ‖e‖1 +

(Γ(α) + 1)M

C

]
.

(2.16)
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Since θ ∈ [0, 1), from the above last inequality, there exists M1 > 0 such that

∥∥Dα−1
0+ u

∥∥
∞ ≤M1, (2.17)

thus from (2.16) and (2.15), there exists M2 > 0 such that

‖u‖∞ ≤M2, (2.18)

hence

‖u‖Cα−1 = ‖u‖∞ +
∥∥Dα−1

0+ u
∥∥
∞

≤ M1 +M2.

Therefore Ω1 ⊂ X is bounded.

If (2.10) holds, similar to the above argument, we can prove that Ω1 is bounded too.

Let

Ω2 = {u ∈ Ker(L)|Nu ∈ Im(L)}.

For u ∈ Ω2, there is

u ∈ Ker(L) =
{
u ∈ dom(L)|u = ctα−1, c ∈ R, t ∈ [0, 1]

}
,

and

Nu ∈ Im(L),

thus
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, csα−1, cΓ(α)

)
+ e(s)

]
ds = 0.

From (A2), there exists t0 ∈ [0, 1] such that
∣∣Dα−1

0+ u(t)
∣∣
t=t0
| ≤ M , where u ∈ dom(L), we get

|c| ≤ M

Γ(α)
, thus Ω2 is bounded in X.

Next, according to the condition (A3), for any c ∈ R, if |c| > M∗, then either

c

(
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, csα−1, cΓ(α)

)
+ e(s)

]
ds

)
< 0. (2.19)

Or else

c

(
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, csα−1, cΓ(α)

)
+ e(s)

]
ds

)
> 0. (2.20)

If (2.19) holds, let

Ω3 = {u ∈ Ker(L)| − λV u+ (1− λ)QNu = 0, λ ∈ [0, 1]} (2.21)
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where V : Ker(L) → Im(Q) is the linear isomorphism given by V (ctα−1) = ctk,∀c ∈ R, t ∈ [0, 1].

For u = c0t
α−1 ∈ Ω3,

λc0t
k = (1− λ)

(
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, c0s

α−1, c0Γ(α)
)

+ e(s)
]
ds

)
. (2.22)

If λ = 1, then c0 = 0. Otherwise, if |c0| > M∗, in view of (2.19), one has

c0(1− λ)

(
m−2∑
i=1

βi

∫ 1

ηi

[
f
(
s, c0s

α−1, c0Γ(α)
)

+ e(s)
]
ds

)
< 0, (2.23)

which contradicts to λc2
0 ≥ 0. Thus

Ω3 ⊂
{
u ∈ Ker(L)| u = ctα−1, |c| ≤M∗} (2.24)

is bounded in X.

If (2.20) holds, then de�ne the set

Ω3 = {u ∈ Ker(L)|λV u+ (1− λ)QNu = 0, λ ∈ [0, 1]} , (2.25)

here V as in above. Similar to above argument, we can show that 3 is bounded too.

In the following, we shall prove that all conditions of Theorem 1.3.12 are satis�ed. Set Ω be a

bounded open set of X such that
⋃3
i=1 Ωi ⊂ Ω.

By Lemma 2.2.4, KP (I − Q)N : Ω → X is compact, thus N is L-compact on Ω. Then by above

arguments, we have

(i) Lu 6= λNu for every (u, λ) ∈ [(dom L \Ker L) ∩ ∂Ω)]× (0, 1);

(ii) Nu /∈ Im L for every u ∈ Ker L ∩ ∂Ω;

Finally, we will prove that (iii) of Theorem 1.3.12 is satis�ed. Let

H(u, λ) = ±λV u+ (1− λ)QNu. (2.26)

According to the above argument, we know

H(u, λ) 6= 0, for all u ∈ Ker(L) ∩ ∂Ω. (2.27)

Thus, by the homotopy property of degree

deg
(
Q N |Ker(L) ,Ω ∩Ker(L), 0

)
= deg(H(·, 0),Ω ∩Ker(L), 0)

= deg(H(·, 1),Ω ∩Ker(L), 0)

= deg(±V,Ω ∩Ker(L), 0)

6= 0.

Then by Theorem 1.3.12, Lu = Nu has at least one solution in dom(L) ∩ Ω, so that the problem

(2.4) has one solution in Cα−1[0, 1].
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2.2.2 Example

Example 2.2.1 Consider the boundary value problem

D
3
2
0+u(t) = 1

10
sin(u(t)) + 1

10
D

1
2
0+u(t) + 3 sin

(
D

1
2
0+u(t)

) 1
3

+ 1 + cos2 t 0 < t < 1

I
1
2
0+u(0) = 0, Dα−1

0+ u(1) = 6D
1
2
0+u

(
1
3

)
− 5D

1
2
0+u

(
1
2

) (2.28)

Let β1 = 6, β2 = −5, η1 = 1
3
, η2 = 1

2
and

f(t, x, y) =
sinx

10
+

y

10
+ 3 sin

(
y

1
3

)
, e(t) = 1 + cos2 t (2.29)

then

β1 + β2 = 1. |f(t, x, y)| ≤ |x|
10

+
|y|
10

+ 3|y|
1
3 (2.30)

Again, taking a(t) = b(t) ≡ 1
10
, then

‖a‖1 + ‖b‖1 =
1

5
<

1

Γ
(

3
2

)
+ 2 + 1

Γ( 3
2)

≈ 1

4
(2.31)

For any u ∈ C
1
2 ∩ I

3
2
0+ (L1[0, 1]), For M = 52, assume

∣∣∣D 1
2
0+u(t)

∣∣∣ > M holds for any t ∈ [0, 1].

Since the continuity of D
1
2
0+u, then either D

1
2
0+u(t) > M or D

1
2
0+u(t) < −M holds for any t ∈ [0, 1].

If D
1
2
0+u(t) > M holds for any t ∈ [0, 1], then

f
(
t, u(t), D

1
2
0+u(t)

)
+ e(t) ≥ M − 21

10
> 0, (2.32)

so

6

∫ 1

1
3

[
f
(
s, u(s), D

1
2
0+u(s)

)
+ e(s)

]
ds− 5

∫ 1

1
2

[
f
(
s, u(s), D

1
2
0+u(s)

)
+ e(s)

]
ds

>

∫ 1

1
3

[
f
(
s, u(s), D

1
2
0+u(s)

)
+ e(s)

]
ds

≥ 2(M − 21)

30
> 0

If D
1
2
0+u(t) < −M hold for any t ∈ [0, 1], then

f
(
t, u(t), D

1
2
0+u(t)

)
+ e(t) ≤ 51−M

10
< 0 (2.33)

so

6

∫ 1

1
3

[
f
(
s, u(s), D

1
2
0+u(s)

)
+ e(s)

]
ds− 5

∫ 1

1
2

[
f
(
s, u(s), D

1
2
0+u(s)

)
+ e(s)

]
ds

<

∫ 1

1
3

[
f
(
s, u(s), D

1
2
0+u(s)

)
+ e(s)

]
ds

<

∫ 1

1
3

[
f
(
s, u(s), D

1
2
0+u(s)

)
+ e(s)

]
ds

≤ 2(51−M)

30
< 0
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Thus, the condition (A2) holds. Again, taking M∗ = 52
Γ(3/2)

, for any k ∈ R, if |c| > M∗, we have

c

(
6

∫ 1

1
3

[
f

(
s, cs

1
2 , cΓ

(
3

2

))
+ e(s)

]
ds− 5

∫ 1

1
2

[
f

(
s, cs

1
2 , cΓ

(
3

2

))
+ e(s)

]
ds

)
> 0 (2.34)

So, the condition (A3) holds. Thus, with Theorem 2.2.1, the boundary value problem (2.28), has

at least one solution in C
1
2 [0, 1].
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