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This thesis deals with the BVP multi-point existence of nonlinear fractional differential equations
at resonance, where the kernel’s dimension of the fractional differential operator is equal to one.

The main results are based on Mawhin’s theory of coincidence.

P, ,
Aledterree

Ze mémoire traite ['existence de solution d’un probleme aux limites a point multiple d’une équation

différentielle fractionnaire non linéaire a la résonance, ou la dimension du noyau de 'opérateur
différentiel fractionnaire est égale & un. L’outil principal utilisé dans dans ce mémoire est basé

principalement sur la théorie de la coincidence du degré di a J.L. Mawhin.
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CONTENTS

Notations
X := Banach space.
I'(:) := Euler’s Gamma function.
B(-,-) := Euler’s Beta function.
I .= Riemann-Liouville Fractional Integral of Order a where Re(a) > 0.

D¢ := Riemann-Liouville Fractional Derivative of order « where Re(a) > 0.

d
D=—.
dt

1
L'0,1] := {u : [0,1] — R is measurable on [0, 1] and / lu(t)|dt < oo}.
0
C*la,b] := {u :[0,1] = R; u has a continuous kth derivative, k € N}.
Cla,b] := C°a, b].
C(Q) :={u:QC X — X; uis a continuous in Q}.

CH0,1] == {u(t)|u(t) = 1§ 2 (t),z € C[0,1],¢ € [0,1], Re(ar) > 0}.

U/(t0> = duz (to), u € Cl (ﬁ)
dtj 1<i,j<n

S, := The set of critical points of u € €.



Introduction

Fractional calculus developed since 17th century through the pioneering works of Leibniz, Euler,
Lagrange, Able, Liouville and many others deals with the generalization of differentiation and
integration to fractional order. In recent years the term fractional calculus refers to integration
and differentiation to an arbitrary order. Fractional differential equations have been of great
interest recently. It is caused both by the intensive development of the theory of fractional calculus
itself and by the applications of such constructions in various sciences such as physics, mechanics,
chemistry, engineering, etc.

Gaines and Mawhin introduced coincidence degree theory in 1970s in analyzing functional
and differential equations [1]. Mawhin has continued studies on this theory later and has made
so important contributions on this subject since then this theory is also known as Mahwin’s
coincidence degree theory. Coincidence theory is a very powerful technique especially in existence
of solutions problems in nonlinear equations. It has especially so broad applications in the existence
of periodic solutions of nonlinear differential equations so that many researchers have used it for
their investigations [7].

The main goal in the coincidence degree theory is to search the existence of a solutions of the

operator equation

Lu = Nu (1)

in some bounded and open set ) in some Banach space for L being a linear operator and N
nonlinear operator. In finite dimensional case, for Q@ C R", u € C(Q), and p € R™\u(09), the
degree of u on Q with respect to p, d(u, §2,p) is well defined. But unfortunately this is not the case
in infinite dimension for u € C(92).

Luckily, in an arbitrary Banach space X, Leray and Schauder proved that for {2 € X open,
bounded set, M : Q — X compact operator and for p € X\(I — M)(99) the degree of compact
perturbation of identity I — M in Q with respect to p, deg(I — M, 2, p) is well defined. One of the
main useful properties of degree theory is that if deg(l — M, 2, p) # 0 then (I — M)z = p has at
least one solution in 2 In particular if we take p = 0 and deg(/ — M, €2, p) # 0 then the compact

operator M has at least one fixed point in (2.
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In [1] Gaines and Mawhin studied existence of a solution of an operator equation (1) defined on a
Banach space X in an open bounded set ) using the Leray-Schauder degree theory but since the
operator I — (L — N) is not compact in general the need to define a compact operator M such
that its set of fixed points in 2 would be equal to a solution set of (1) in .
In [1] the compact operator M is given and the coincidence degree for the couple (L, N) in 2 is
defined by deg[(L, N), Q] = deg(I — M,,0).

The purpose of these thesis is to study the existence of solution to fractional boundary value
problems at resonance in Banach spaces. Our study is based upon the coincidence degree theory

of Mawhin.
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1.1 Preliminaries on the Fractional Calculation

1.1.1 Gamma Function

One of the basic functions of the fractional calculus is Euler!’s gamma function I', which generalizes

the factorial, n!.

Definition 1.1.1 Gamma function (I') is defined as:
I'(a) :/ et dt. (1.1)
0
Theorem 1.1.1 Function I'(«) is convergent for Re(a) > 0.

Example 1.1.1 Ewvaluate I' (%) by definition 1.1.1
1 T
r <—> :/ —e tdt.
2 o Vi
Since we have by using the substitution t = s2,
dt = 2sds,
where
1 too
r (—) = / Ze " 2sds
2 o S
+00 5
= 2/ e % ds.
0

Compute [F (%)]2, we find

= 0
z_:;onse NS [0,+oo [,96 [O,g}

!Leonhard Euler (1707-1783) was a Swiss mathematician, physicist, astronomer, logician and engineer who
made important and influential discoveries in many branches of mathematics, such as infinitesimal calculus and
graph theory, while also making pioneering contributions to several branches such as topology and analytic number

theory.
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we will have

Some Properties of the Gamma Function
The basic properties of the Gamma function are:
1. The function I'(«) obeys the property:
MNa+1) =al(a). (1.2)
Since we have

Fa+1) = / e "t = — [e_tto‘};o + a/ e 't ldt = al'(a). (1.3)
0 0

2. The following particular values for I' function can be useful for calculation purposes:

I'(n+1)=nl
1
o
r (_% —V
(3)-4e
()%

}1
7 N
DO | Ot
~—

Il

w
“|
=)

1.1.2 Beta Function
Definition 1.1.2 The Beta function, or the first order Euler function, can be defined as:
1
B(p,q) = / (1 — 1)t
0

where

Re(p) > 0 and Re(q) > 0.
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Some Properties of the Beta Function

The basic properties of the Beta function are:

1. For every Re(p) > 0 and Re(q) > 0, we have:

B(p,q) = B(q,p).

since we have by using the substitution t =1 — s
1 0 1
B(p,q) = / 1 — ) Nt = —/ (1—s)P1s s = / 57711 — s)P"tds = B(q,p).
0 1 0

2. For every Re(p) > 0 and Re(q) > 0, it is valid the identity:

L'(p)'(q)

Blp.q) = L(p+q)

Since we use the definition 1.1.1 to obtain

I'(p)(q) :/ e_ttp_ldt/ e %51 1ds—/ / —(ts)yp—lga- 1dtds—/ / (t,s)dtds.
0 0

Now we apply the change of variables t = zy = ¢(z,y) and s = z(1 — y) = ¢¥(z,y) to this
double integral.

Note that £ + s = x and that 0 < t < oo and 0 < s < oo imply that 0 < z < oo and
O<y<l.

The Jacobian of this transformation is

096 00
Jac=| %" % | = =—zy—r+rYy=—0I.
9w ov l—y —x
ox Oy Y

Since z > 0 we conclude that
dtds = |Jac|dxdy = xdxdy.
Hence we have

@ = [ [ R v ) acldsdy
/ / e TP yP a1 — )T adady
/ —T Pta— 1d$/ ypfl(l_y)qfldy

0 0

= Llp+9) B9
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1.1.3 Riemann—Liouville Differential and Integral Operators

Definition 1.1.3 Let u be a continuous function, for every Re(a) > 0, the Riemann®-Liouville?

fractional integral of order o is defined:

ITu(t) = ﬁ/ (t —5)* tu(s)ds, —oco<a<t< oo, (1.4)

Example 1.1.2 We consider the function u defined by u(t) = (t — a)® and we will calculate their

integral of order o where Re(a) > 0,

1 t
I%(t —a)’ = m/a (t — ) (s —a) ds.
We assume the change s = a + (t — a)T we obtain:
ds = (t — a)dr,
s=a—717=0,

s=t—>71=1.

So
I%(t—a)’ = FL/ (t—a—(t—a)r)* Ya+ (t—a)T —a)’(t —a)dr
= FL/ (t—a)* ' (1 — 7))t — a)’T°(t — a)dr
= ( — a+5 — ) Bdr
- /o“ o

o F( ) (ﬁ—’_l) (t_a>a+ﬁ

- T(@)l(a+B+1)

_ DB e

— (a+ﬁ+1)<t )ots, (1.5)

Corollary 1.1.1 Let u be a continuous function of two variables (s, z), we have the next Dirichlet*

equality

t s t t
//u(s,z)dzds:/ / u (s, z)dsdz.

If u does not depend on s, but on z alone (see the integration area in Figure 1.1):

// dzds—// dsdz—/atu(z)/:dsdz

:/ w(z) (t - z)dz.

a

(1.6)

2B. Riemann (1826-1866) was a German mathematician who made contributions to analysis, number theory,

and differential geometry.
3J. Liouville (1809-1882) was a French mathematician known for his work in analysis, differential geometry, and

number theory.
4J.P.G.L. Dirichlet (1805-1859) was a German mathematician who made deep contributions to number theory,

and to the theory of Fourier series and other topics in mathematical analysis.
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When the indefinite limit of integration comes first, (1.6) becomes (see the integration area in

Figure 1.1 )
// dzds-// dsdz—/ u(z)/ dsdz
! ! (1.7)
- [ue -0
t
P s =z > s =2z
t - - a =

B N - .8

a t ' t a

Figure 1.1: Left: integration area of (1.6); right: integration area of (1.7)

Theorem 1.1.2 The exponents property:
I9TPu(t) = 19Pu(t).

Proof. For Re(a) > 0, Re(5) > 0, it results:

gy = L [T et s - oVl dds.
R0 = mog [ =9 [ = ()

If we apply the Dirichlet equality

// dzds—// 2)dsdz,

we obtain:
IT5u(t) / / —5)*7 s — 2)P 7 u(2)dsdz,
s=z+k(t—z),
ds = (t —z2)dk, t—s=(1—-k)(t—=2),
aTl _ LL ! o a+pB—-1 ! . a—17.8-1
I = T / (t— 2)ot u(z)/o (1= k)= dzdk,
but:

L(a)I'(B)

/0 (1—k)* 'k Yds = B(a, ) = NCER
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Finally, it results:

Definition 1.1.4 /2] Let I§, (L'(0,1)), Re(«) > 0, denote the space of functions u, represented

by fractional integral of order o of a summable function: uw = Ig,v,v € L'(0,1) .

In the following Lemma, we use the unified notation of both for fractional integrals and frac-

tional derivatives assuming that /g, = Dg, for Re(a) < 0.

Lemma 1.1.1 /2] The relation
13+I(JB+90 = ](())fﬁ%

1s valid in any of the following cases:
1. 3>0,a+p>0, o(t)eLY0,1).
2. B<0,a>0, t)e ;7 (LY0,1)).
5. a<0,a+8<0, )€ 7 (LH0,1)).
Theorem 1.1.3 Linearity property:
IZ[CLf (1) + Cog(t)] = Cy I f (1) + Co Igg(t), (1.8)

where Cy and Cy are constants and f(t) and g(t) are functions.

Proof.
I .
G0+ Caglt)] = s / (t — 9)* " [Cof(y) + Cagly)] dy
= Clﬁ/(t—y)a‘lf(y)dy
+eiris [ (¢ = 1) g(y)dy
= O I°f () + Oy Ig(t).
[ |

Definition 1.1.5 For every o, and n = [a] + 1 the Riemann—Liouville derivative of order o can

be defined as:
Deut) = ﬁ (%)n / (= 5o Lu(s)ds. (1.9)
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Example 1.1.3 We consider the function u defined by u(t) = (t — a)® and we will calculate their

fractional derivative of order o such that n = [a] + 1 by ezample (1.5) we get:

Dite-af = (§) -

o _(dY" I'(B+1) tna
Dit-a)” = (E) {F<B+1+n—a>(t_a)ﬁ }
_ I'(s+1) A", ypn-a
__Fw+1+n—®(ﬁ)(t )’
r'p+1) Fw+n—a+UG_@&a
r+1+n—a) I'(—a+1)
F(B + 1) (t _ a)ﬂfa
I'B—a+1) .
Because

(d)n(t—a)m”_o‘ = B+n—a)B+n—a—-1)...6+n—a—(n—1)(t—a)

dt
B r+n—a+1) _ \f-a
= TG -atD (x —a)”™ ™.

Remark 1.1.1 The Riemann-Liouvelle fractional integration and fractional differentiation opera-
tors of the power functions t° yield power functions of the same form. For Re(a) > 0, Re(f) > —1,

there are

rpB+1)

P(B + 1) tﬁ—i—oz F(ﬁ )
—a+1

th=e,
F'B+a+1) ’

I(()lth[j = D(‘)’+t’3 -

Theorem 1.1.4 Linearity property:
D [C1f(t) + Cog(t)] = C1 Dy f(t) + C2 Dgg(t),
where Cy and Cy are constants and f(t) and g(t) are functions.

Proof. Since we have by using (1.8)

DelC0)+ Caelt] = () (ICur(0) + Caglt)])
d

- (%) (CLI;=f (1) + Calp™g(1))
d

" — d\" n—a
_ o (%) " F(t) + Oy (%) (1)
= CDOf(t) + CoD%g(t).
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Theorem 1.1.5 The following integration and derivation rules are valid:

(a) %(Ig‘u)(t) = (I>7'u)(t), where Re(a) > 1.

(b) DY (18u)(t) = u(t), where Re(a) > 0.

(©) I3 (D3u(t) = u(t) = ), (D3 )], U

Ha_j 1 1) where Re(a) > 0, n € N,

Proof.

(a) Since we have by using (1.2)

(i) om0 = () Gy [t
B (%) (a- 1>1£<a —1) /om“ = )" u(s) Lo (5)ds

N (a — l)llj(oz —1) /o Oo(a = 1)t = 5)*"u(s) Ly (s)ds
= —T(al— 1 /a (t — s)(o‘_l)_lu(s)ds

= (1)),

(b) We need to consider the case of an integer « =n > 1

(“pzor) 0 = (1) (00
- Gyl e
_ % [ﬁ / t <%)n1 (t s)"—lu(s)ds]

_ % {ﬁ /at(n_ 1)!u(s)ds}

¢
= % ’ u(s)ds
= u(t).
We take now « €|n — 1, n] we will have

przol@) = () [ ) )

(c) We have

*(Du(t)) — FL / (t — 5)* 1 Du(s)ds
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Where o €]n — 1,n[ and there is k € N such that n = m + k, so

oy [ orpmons = b fa o (£) e

! K
= ﬁ/@ (t—s)* <d%) D; 5=y (s)ds
_ ﬁ / (t — 5)° D=y (s)}ds
k N » (t — a)ei+!
_Z [(% (D" )U(t))] TZ+a—j)

- =T / (= )2 Dy (s) s

S S g

= (%)” T(n+ al— k1) /:(t )DL uls) s
_ i [ ( % ) mtk—j [m+kj(aj)u(t)] 3 —éi;f):__]j)

g S, 52
= Dt = 3 [P us) &;f):_]j)

Hence

fi (Drutt)) = %{Dalu(w—Z[Da—ju(t)}t:aw}

r2+a-—1j)
k i
S N =L
= t”ﬂa—J+D

m
Lemma 1.1.2 Forn = [a]+ 1 and m € N we have:
(D™ DG, u)(t) = (Dgi™u)(t).

Proof.

g~ () (5) oo

d i n—m+m—a

(DG u)(1)-



1.2. Some functional Spaces 14

1.2 Some functional Spaces

Definition 1.2.1 A real Hilbert space X is a real Banach space associated with an inner product

(-,-) : X x X — R with the following two properties:
o (u,v) is a bilinear form on X, that is, it is linear in u and in v;
o [lull = v/{u, u).

Definition 1.2.2 A function u : [a,b] — R is said to be absolutely continuous on [a,b] if, given

e > 0, there exists some 6 > 0 such that

Z|u ti)| <e,

whenever {[t;,t}] i =1,...,n} is a finite collection of mutually disjoint subintervals of [a,b] with

=1

Proposition 1.2.1 The following conditions on a real-valued function u on a compact interval

[a,b] are equivalent
1. w is absolutely continuous;

2. there exists a Lebesque integrable function v on [a,b] such that

for all t in [a,b].

Definition 1.2.3 /2] For n € N, we denote by AC"[0,1] The space u(t) which have continuous

derivatives up to order n — 1 on [0,1] such that D™ Yu(t) is absolutely continuous:
AC™[0,1] = {u[[0,1] = R and (D" 'u) (t) is absolutely continuous in [0,1]} .

Lemma 1.2.1 Let a > 0,n = [a] + 1. Assume that v € L'(0,1) with a fractional integration of
order n — « that belongs to AC"[0,1]. Then the equality

. - () ()" =0,
([ D0+u)()—u(t)—z Mla—k+1) t

k=1

holds almost everywhere on [0, 1].
Definition 1.2.4 [2] Given 8 > 0 and N = [5] + 1 we can define a linear space
C7[0.1] = {u(®)]u(t) = Igra(t) + art’ 4 - 4 ent?” VD 2 € €0, 1]t € 0,1]},

where c; e R, i =1,...,N —1.
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Lemma 1.2.2 /2] CP[0,1] is a Banach space with the norm
o = [+ 0]+ ke

Lemma 1.2.3 [2] F C C°[0,1] is a sequentially compact set if and only if F is uniformly bounded

and equicontinuous. Here uniformly bounded means there exists M > 0 such that for every u € F

lulles = || D]+ + | D&Y ]|+ lulloo < 2,

o0

and equicontinuous means that
Ve > 0,36 > 0, for all t1,t2 € [0,1], |[t; —t2| < d,u € F,ie{0,--- ,N—1},
there hold

lu(ty) —u(ty)] <&, |Dy"u(ty) — Dy tu(ty)| < e

Definition 1.2.5 [5] We define the space C'(Q) as follows: C*(Q) = {u € C(Q) : u can be extended
to a function @ on an open set Oy O Q in such a way that U has continuous first-order partial

derivatives on O }.

1.3 The Coincidence Degree Theory of Mawhin

1.3.1 Brouwer Degree
Let © C R™ be an open and bounded, u : 2 — R™ a function such that v € C'(Q) and p, € R".

We consider the following problem:

(P) Find t € Q, u(t) = po.

Example 1.3.1 (n=1) Let Q =]0,1] and u : Q — R be a function of class C*([0, 1]), satisfies the
following assumption

For all solution t of (P), u'(t) # 0.

We introduce the next integer

Y icrsen (v (t;)), if {ti;i € I C N} is the set of solution of (P)
0, if the problem (P) has not solution.

d (po) = (1.10)

Where, the integer d depends on the function u and the open set 2.

We give illustrative examples.
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u(t)

A

Po [\
[\ \
;f I'\ f ""/

|
|
W

.E |

d(po) =1

u(r)

wlA S

Remark 1.3.1

!
Figure 1.2
yu(t)

£ } d=0

Po N Fd=0

: . } d= -1

} a=0

0l I

Figure 1.3

e If d(po) # 0 the problem (P) admits at least one solution.

e Ifd(po) =0 the problem (P) may or may not admit a solution.

Continuous and Differentiable Functions

We begin with the following Bolzano’s intermediate value theorem:

16

Theorem 1.3.1 Let u : [a,b] — R be a continuous function, then, for m between u(a) and u(b),

there exists ty € [a, b] such that u(ty) = m.

Corollary 1.3.1 Let u : [a,b] — R be a continuous function such that u(a)u(b) < 0. Then there

ezists ty € (a,b) such that u(ty) = 0.

Corollary 1.3.2 Let u : [a,b] — [a,b] be a continuous function. Then there exists to € [a,b] such

that U(tg) = t().
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Definition 1.3.1 Let Q2 C R"™ be an open subset. then a function u : Q0 — R™ is differentiable at

to € Q if there is a matriz u'(ty) such that
u(to+h) =u(ty) +u'(to)h + O(h), (1.11)
where to + h € Q0 and % tends to zero as |h| — 0.
o If u € C'(Q) is differentiable at t,, we call
J (to) = det u'(ty), (1.12)

the Jacobian of u at t,.

e If J, (to) = 0, then tq is said to be a critical point of u. The set of all critical points of u in

Q2 is denoted by S,(€2), where

S (Q)={teQ:J,(t) =0}. (1.13)

Construction of Brouwer Degree

Let 2 € R" be open and bounded and u € CY(Q). If p ¢ w(99), then the Brouwer degree

deg(u, 2, p) is a tool that describes the number of solutions for equation u(t) = p.

Theorem 1.3.2 [9] Let u € C1(Q), p € R™ be given with p ¢ u(S,). Then the set u='(p) is either

finite or empty.

Definition 1.3.2 [7] Let u € C*(Q), p € R" be given with p ¢ u(99), and p ¢ u(S,). The
Brouwer degree of w at p with respect to ), deg(u, €, p), is defined by

deg(u,Q,p) = Z sgn J,,(t)

teu=1(p)

where deg(u, Q,p) =0 if u='(p) = 0.
Theorem 1.3.3 [i] If p € Q, then deg(I,Q,p) = 1. If p ¢ Q, then deg(I,,p) = 0.
Example 1.3.2 Let Q = B(0,2) and
u(t) = (6§ — 1,4, + 3t), teR?
For this function we have u='((0,0)) = {(1,—1/3)} and

3t2 0
1 3

u'(z) =

Thus sgn J,((1,—1/3) = 1 = deg (u, B(0, 2),0).
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Definition 1.3.3 [7] Let Q C R" be open and bounded and v € CY(Q). If p ¢ u(0S), and
p ¢ u(Sy). Then we define
deg(u, 2, p) = deg(v, 2, p),

where v € CH(Q) and |v — u| < d(p, u(0N)).
Theorem 1.3.4 [7] Let Q C R™ be an open bounded subset and u : Q — R"™ be a continuous
mapping. If p ¢ u(0Q) then deg(u, 2, p) satisfy the following properties:

1. (Solvability.) If deg(u,Q,p) # 0, then u(t) = p has a solution in €.

2. (Homotopy). Let H(),-) : [0,1] x Q — R" be continuous and such that H(\t) # p,
A€ [0,1], t € 00. Then deg (H(A,-),Q,p) is a constant on X € [0,1] .

3. (Additivity). Suppose that Q2y, Qo are two disjoint open subsets of Q and p ¢ u (ﬁ - (U Qg))
Then
deg(“v va) = deg (U, Qlap) + deg (U, QQap) :

Theorem 1.3.5 Let u: B(0,R) C R" — B(0, R) be a continuous mapping. If |u(t)| < R for all

t € 0B(0, R), then u has a fized point in B(0, R).

Proof. We assume that ¢ # u(t) for all t € 0B(0, R). Put

H(\t) =t— Au(t) for all (\,t) € [0,1] x B(0, R).

Then
0 # H(A,t) for all [0,1] x 9B(0, R).

Where deg (H (), -),$2,0) is a constant on A € [0, 1]. Therefore, we have
deg(H(/\7 ')7 B<Ou R)7 0) = deg(j — U B(Ou R), 0) = deg(]7 B<07 R)? 0) =1

Where
lu(t)| < d(0,1(0B(0,R))) < d(0,0B(0,R)) < R.

Hence u has a fixed point in B(0, R). m

Theorem 1.3.6 /7] Let C C R" be a nonempty bounded closed convex subset and u : C' — C' be

a continuous mapping. Then u has a fixed point in C.

Theorem 1.3.7 (Borsuk’s Theorem). let Q) C R™ be open bounded and symmetric with 0 € €.
If u € C(Q) is odd and 0 ¢ u(09), then deg(u,,0) is odd.
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1.3.2 Leray-Schauder Degree
In 1934, Leray and Schauder generalized Brouwer degree theory to an infnite Banach space.

Lemma 1.3.1 Let X be a real Banach space,  C X be an open bounded subset and M : Q — X
be a continuous compact mapping without a fized point in 0S), so if € > 0 such that ||u— Mul| > 4e
for all w € 992. Then, for any € > 0, there exist a finite dimensional space E. and a continuous

mapping M. : Q — E. such that
|Meu— Mu|| <& forallueQ,
|lu — Mou|| = 3¢ for all u € 09.

We can define the Leray-Schauder degree of I — M by the approximation M,

Definition 1.3.4 Let X be a Banach space, Q C X be an open bounded set and M : Q — X be
a continous compact mapping without a fized point on 0, let e > 0, E. C X and M. : Q — E.
given by lemma 1.3.1.

We consider F a finite dimensional space containing E., such that Qp = FNQ # 0. We define

the Leray-Schauder degree by
deg(I — M,Q,p) :=deg (Ir — M., Qp,p),
where p € F..

Theorem 1.3.8 [5] Let p ¢ (I — M)(00). If deg(I — M, p) # 0, then there exists ug € 0 such
that (I — M)ug = p.

Theorem 1.3.9 /7] The Leray-Schauder degree has the following properties:
1. (Normality). deg(I,9,0) =1 if and only if 0 € Q.
2. (Solvability). If deg(I — M,Q2,0) # 0, then Mu = u has a solution in §).

3. (Homotopy). Let H(\, u) :[0,1] x Q — X be continuous compact and H(\,u) # u for all
(A u) €10,1] x 0. Then deg (I — H(A,-),Q,0) doesn’t depend on A € |0, 1].

Lemma 1.3.2 [/ The Leray-Schauder degree of a linear isomorphism is equal to £1.

1.3.3 On the Coincidence Degree Of Mawhin

Mawhin studied a class of mappings of the form L + N, where L is a Fredholm mapping of index
zero and N is a nonlinear mapping, which it called a L-compact mapping. These two concepts

will be discussed later.
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Algebraic Preliminaries

Let X and Z be two vector spaces, the domain of operator L, dom L is a linear subspace of X,

and L :dom L C X — Z is a linear operator. Assume that the operators

P:X—-X Q:Z—2Z7
linear projection operators such that the chain
XBdmL 5 2%z (1.14)

is exact, that is, Im P = Ker L and Im L = Ker Q).
Let us define the restriction of L to dom LN Ker P as Lp : dom L NKer P — Im L.

Lemma 1.3.3 [2] Lp is an algebraic isomorphism.

Now, let us define Kp := L;l, where Kp : Im L C Z — dom L N Ker P is one-to-one, onto, and

PKp=0.
Lemma 1.3.4 [//
1. OnTm L, we have LKp = L(I — P)Kp = Lp(I — P)Kp = I.
2. On dom L, we have KpL = KpL(I — P) = KpL,(I — P) = (I — P).

Definition 1.3.5 Let z € Z and Im(L) is a subspace of Z. Then z + Im(L) is the subset of Z
defined by
z4+Im(L)={2+4+%z: ze€Im(L)}.

Example 1.3.3 Let Im(L) = {(z,2x) € R?* : x € R} Then Im(L) is the line in R? through the
ortgin with slope 2. Thus
(17,20) + Im(L)

is the line in R? that contains the point (17,20) and has slope 2.

(10,20) (17, 20)
20 F

Im(L)

(17, 20) + Im(L)

/ 10 17

Figure 1.4
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Definition 1.3.6

o An affine subset of Z is a subset of Z of the form z + Im(L) for some z € Z and some
subspace Im(L) of Z.

o For z € Z and Im(L) a subspace of Z, the affine subset z + Im(L) is said to be parallel to
Im(L).

Example 1.3.4 In Ezample 1.3.3 above, all the lines in R? with slope 2 are parallel to Im(L).

Definition 1.3.7 The cokernel of a linear mapping of vector spaces L : dom L — Z is the quotient

space Z/Im(L) of the codomain of L by the image of L.

Definition 1.3.8 Let Im(L) is a subspace of Z. Then the quotient space Z/Im(L) is the set of
all affine subsets of Z parallel to Im(L). In other words,

Coker L = Z/Im(L) = {z+Im(L) : z € Z}.

Example 1.3.5 If Im(L) = {(z,2z) € R? : x € R} then R*/Im L is the set of all lines in R?
that have slope 2.

Definition 1.3.9 Let Im(L) is a subspace of Z. The canonic surjection operator 11 is the linear

IT: Z — Coker L defined by
I(2) =z 4+ Im(L) for z€ Z.

Definition 1.3.10 Let Z is finite-dimensional and Im(L) is a subspace of Z. Then
dim Coker L = dim Z/Im(L)) = dim Z — dim Im(L).
Lemma 1.3.5 [// The canonic surjection operator I is linear and Ker II = Ker Q.
Proposition 1.3.1 If there exists an one-to-one operator A : Coker L — ker L, then
Lu=2z2 2z2€Z (1.15)

will be equivalent to

(I — P)u= (AIl + Kpg) . (1.16)

Here, the operator Kpg : Z — X is defined as

Kpg=Kp(I - Q).
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Proof. Since Im L = ker @) = ker II, then for z € Im L we have QQz = 0 and Allz = 0. From here,

it is seen that

Lu=2 < Lu=2z—-Qz
<— KpLu= Kp(z—Qz)
(I —Pu=Kp(l —Q)z

<~
— ([ —Plu=AI+Kp(I—-Q))-=.

Definition of Coincidence Degree for Some Linear Perturbations of Fredholm

Mappings

Let X and Z be two real Banach spaces,  C X an open, bounded subset of X and Q an closure

of ). Let us assume that the operators
L:domLCcX —Z, N:QCX—=Z (1.17)
satisfy the following conditions:
(7) L is linear and Im L is an closed subset of Z.
(77) Ker L and Coker L = Z/Im L are finite dimensional spaces and dim ker L. = dim Coker L.
(#31) the operator N : Q C X — Z is continuous and TIN(f2) is bounded.

(iv) the operator KpgoN : Q — Z is compact on Q.

Definition 1.3.11 The operator L which satisfies the conditions (i) and (i1) will be called as

Fredholm operator of index zero.

Definition 1.3.12 The operator N : Q — Z which satisfies the conditions (iii) and (iv) will be

called L-compact operator.

Theorem 1.3.10 /5] Let Z be a Banach space. If the operator L is a Fredholm operator of index

zero then there exist continuous projections P : X — X and Q) : Z — Z such that the chain
XBdmr 5L 2z2 2 (1.18)

will be exact.
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Proposition 1.3.2 [5] The element u € dom L N Q is a solution of the operator equation (1) if
and only if it satisfies

In other words, the set of solutions of (1) is equal to the set of fized points of the operator M :
Q — X defined by
M =P+ (AIl+ Kpg) N. (1.20)

Here, A : Coker L — ker L is any isomorphism.

Proposition 1.3.3 [2] Assume that the conditions (i)—(iv) hold. Then, the operator M is compact
on €.

Lemma 1.3.6 [// If0 ¢ (L — N)(Dom L N 0Y) then the Leray-Schauder degree (I — M,$2,0) is
well defined.

Definition 1.3.13 [/] If the operators L and N satisfy the conditions (i) — (iv) and Lemma 1.3.6
then the coincidence degree of L and N in ) defined by

deg((L,N),Q) = deg({ — M,Q,0). (1.21)

Theorem 1.3.11 [8] Assume that the conditions (i) to (iv) and Lemma 1.3.6 are satisfied. Then

coincidence degree satisfies the following basic properties.
1. (Ezxistence theorem). If deg[(L,N),Q] #0, then 0 € (L — N)(dom L N ).
2. (Ezcision property). If Qy € Q is an open set such that (L — N)7*(0) € Qo, then
deg[(L,N), 2] = deg[(L, N), Q] . (1.22)
3. (Additivity property). If Q = QU Qy with Q and Qs are open, bounded, disjoint subsets

of X, then
deg[(L,N), ] = deg[(L, N), %] + deg[(L, N),Qs]. (1.23)

4. (Invariance under homotopy property). If the operator

N:Qx[0,1] = Z

B (1.24)
(u, \) — N(u, \)

is L—compact in Q x [0,1] and such that for each X € [0,1], 0 ¢ [L — N (-, \)](dom L N %),
then coincidence degree deg[(L, N(-,\)), €], is independent of X in [0,1]. In particular

deg[(L,N(-,1)),Q] = deg[(L, N(-,0)), Q]. (1.25)
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Theorem 1.3.12 [/] (Mawhin’s theory of coincidence). Let L be a Fredholm operator of

index zero and let N be L—compact on Q. Assume that the following conditions are satisfied:
(i) Lu # ANu for every (u,\) € [(dom L\ Ker L) N 02)] x (0,1).
(1) Nu ¢ Im L for every u € Ker L N 0N2.

(i11) deg(Q@Nkerr, 2N KerL,0) #0,
where Q) : X — X is a projection as above with Im L = Ker Q. Then the equation Lu = Nu

has at least one solution in dom L N Q.
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2.1 Motivation

Let X and Z be two Banach spaces. Consider the operators
L:X—Z N:X—Z
where L being a linear operator and N nonlinear operator. Let the operator equation
Lu = Nu. (2.1)

We can write the fractional boundary value problems with the form (2.1). If L is invertible, or
Ker L = {0}, (2.1) is called non-resonant problem. Otherwise, if Ker L is not a trivial space, then

it is called resonant problem.

Example 2.1.1 (Non-resonant case). We define the boundary value problem at non-resonance

Dg.ult) = f(tult)), 0<t<1

D*tu(0) = D2u(1) =0, (1) =0
Where 2 < a < 3. Let X = C([0,1],R), with the norm ||u/s.

(2.2)

e Define L to be the linear operator from X to X as
Lu=Dg,u, uelX.
Thus Ker(L) = {0}.
Example 2.1.2 (Resonant case). We define the boundary value problem at resonance as
Dg u(t) = f(t,u(t),Du(t)), 0<t<l1

I57 " (#)leg = 0, Bu(p) = u(1)
where 1l < a<2,0<pu<1, and f € R. Let

(2.3)

Z =LY0,1], X =cC*"'0,1]
with the norm
[ullea = || D57 ul| , + llulloo.
Then X is a Banach space.
e Define L to be the linear operator from dom(L) N X to Z with
dom(L) = {u € C*7'[0,1]
Dgu € L}(0,1), DE2u(0) = 0, Bu() = u(1)},
and

Lu = Dg,u, u € dom(L).

Thus Ker(L) = {ct*|c € R}.
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2.2 Application with the Coincidence Degree of Mawhin

In this section, the following fractional order ordinary differential equation boundary value prob-

lem:
D¢ u(t) = f(t,u(t), Dy ut)) +e(t), 0<t<1

I ()|, =0, D§'u(l) =02 8,05 u(n:) -

is considered, where 1 < o < 2, is a real number, f : [0, 1] x R? — R is continuous and e € L'[0, 1],

(2.4)

and n; € (0,1), are given constants such that 327 % 3 = 1.

By using the coincidence degree theory, some existence results of solutions are established.

2.2.1 Existence Result

Here, we always suppose that 1 < a < 2 is a real number and 2?512 G, = 1.
Let
Z =LY0,1], X =cC*'0,1]

with the norm

lullea-s = || g ul|  + [lulloc-

Then X is a Banach space.

Given a function u such that
Dy,u= f(t) € L'(0,1) and Ig;%u (t)|,_, = 0.
There holds u € C*71[0,1]. In fact, with lemma 1.2.1, one has
u(t) = I§ f(t) + et + oot 2
Where

(0 o, "0 W)

“a= () ’ T(a— 1)

Combine with Ig;%u (t)|,_, = 0 there is c; = 0. So,

u(t) = I$f(t) +ct™!
= 1§ f(t) + [T el (o)

= I§7 Lo f(t) + al(a)] .

Because
I el(a) = Fc(g—(_ai)/o(t—s)“_QdS
B al'(a) a1 |t
= et

= Clta_l.
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Thus v € C*710, 1].
e Define L to be the linear operator from dom(L) N X to Z with
dom(L) = {u € c*7'[0,1]

|Diu € L0, 1), Iz *u(0) = 0, Dg; u(1 Z B:Dg u ()

and

Lu = Dg,u, u € dom(L). (2.5)
e Define N : X — Z by
Nu(t) = f (¢, u(t), Dy u(t) +e(t), tel0,1].
Then boundary value problem (2.4) can be written as

Lu = Nu.

Lemma 2.2.1 Let L be defined as (2.5), then

Ker(L) = {ct*'|c € R} (2.6)
and _ )
Im(L) = {y € Z| Zﬂi / y(s)ds = O} : (2.7)
Proof.

e By Lemma 1.2.1, Lemma 1.1.1, D§, u(t) = 0 has solution,

Dy u(t) = 0.
Ig. DG u(t) = 0.
2—a 4
u(t) = (IO+ u(t)) =0 ya—1 Ig;au (t)|t:0to¢—2
() IMNa—1)
2 9 (a— ,a
_ (%) I§+( Dy (t)|t:0ta—1 ]g+ U(t)‘tzo a-2
(o) [a—1)
_ D(?J:lu ()li=0 a1 Ig;a“ ()li=0 02
[(a) INa—1)

Combine with Ig;u (t)|,_, = 0. So

u(t) = ct* 1,
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where
_ D(C):lu (t)‘t:O
la)

Hence

Ker(L) = {ct*'|c e R}.
e Assume that y € Tm (L), where
Im (L) = {y € Z| y = D§, u(t) for some u € dom (L)} .

Since y € Im (L), there exists a function v € dom (L) such that y(t) = Dg§, u(t). Then we

have
IS y(t) = u(t) — et — gt
where
a— 2—«
o — D0+1u ()], o — Iy u (1)],—g
! Tla) =~ °  T(a—1)

By the boundary condition Ig;%u (t)|,_,, one has ¢; = 0. So,
u(t) = Igyy(t) + ext™™
and by lemma 1.1.1.
Dictult) = DgIgyy(t) + Dis (et™™)
2
= () B m +ar)
= IRy + aT()

I y(t) + el ().

Where, for t = 1.
a(a) = Dg; (1) - I3, y(1).

Tn view of the condition D§;  u(1) = 327" % B;Dg:  u (m:), we have
m—2

Dgitu(l) = BiDgy ()

~
[y

3
N

I
(]

Bi {Tory(ni) + Do tu(l) — I y(1)}

.
[y

3
N

I
™

s
Il
—

m—2
Bi (Ioy(m) — Iopy(1) + > BiD§ u(1)
i=1
m—2

Bi (féer(ni) - Ié-i-y(]‘)) + Dgf“(l) Z Bi

=1

3
S

I
1M

3
&

= Bi (Iysy(ni) — 1, y(1)) + D u(l)
1

.
Il
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it is equal to

sz_jﬂi (Ioyy(ni) — Iy(1)) =0 = TZ_Q& (/On y(s)ds — /Oly(s)ds> =0

thus, we obtain (2.7).

On the other hand, suppose y € Z and satisfies:

m—2 1
Z Bz/ y(s)ds =0
i=1 i
Let u(t) = I§,y(t), then we have
D u(t) = Do dgy(t)
= y(t)
thus Dg, u(t) € L'(0,1). And
Lo *u(0) =I5 " 15 y(0)
= 0.

In fact, with D, u(t) = It y(t), one has D§; (1) = S 3D u (n;), where
m—2

DgT'u(l) = Y BDGT u(m)
=1
m—2
= Zﬁij(}+y(77i)

-2

= Bi /0’“ y(s)ds

=1

3

m—2

-3 ([ sas+ [ ats1as)

Therefore, v € dom(L) and D, u(t) = y(t). So, y € Im(L).

30
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Lemma 2.2.2 There exist k € {0,1,--- ,m — 2} satisfies
m—2
> Bt #1
i=1

Proof. Suppose it is not true, for any k£ € N we have

m—2
Z 51'775“ = 1.
=1

that means
M M2 Mm—2 B 1
oM Mo B | |1
7 1 Bin—a 1
it is equal to
4 4
Bim + Bang + ...+ Br—afm—2 =1 Bim + Bang + ...+ Br—afm—2 — 1 =10
Bunt + Bals 4 - A Bnatiy oy =1 Bt + Bans - A Bm—aiy 5 —1=10
: & :
Bin 2 4 By 2 A oy = 1 B2 4 By A Bnany 3 — 1 =10
| B By T A Bty = 1 | Bl By T L+ Bt — 1= 0
it is equal to
Uit M2 Mme2 1 b1 0
moom o Mg 1 Bo 0
oy s 1 B2 0
7 SR O S —1 0
it is equal to
1 T o Nm—3  Mm—2 -1 0
1 77% T 777271—3 7721—2 B 0
1o s T Bin—s 0
Lot e Ty s Bin—s 0

In fact, with the Vandermonde Determinant is not equal to zero and it is invertible, one has
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L m o N3 N2
1 77% T 7]72n73 772172
o=
L S
L R o R
L m 12 m—2
L—m 0 ma(me—m) - Dm2(m2—m)
L—m 0 05 (2—m) - 0n=s(m—2 —m)
L—m 0 05 2(2—m) - 0n=3(m—2—m)
1 772 e nm72
L=m  mm—m) - Nm2(m-—2—m)
R . .
L—m (e =m) o =3 (Thmz — M)
L—m 5 2 —m) - 1=3(lhm2 — M)
1 7o “ Mo
1 7o crr Mo
= m(l—=n)m2—m) - m-2—m) '
1 g3 g3
o™ - T3
= m(d=n)m2—m) - M-z — 1) Vi
= m@=n)m2—m)  m—2—n)[M2(1 —n2)(n3 —m2) - (M2 — 02)]Vin—3
= I #Q—=n)mi—n).
1<i,j<m—2
Hence
—1 0
B 0
Bm—3 0
B2 0

there is a contradiction. m
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Lemma 2.2.3 [?] L : dom(L) N X — Z is a Fredholm operator of index zero. Furthermore, the

linear continuous projector operators QQ : Z — Z and P : X — X can be defined by
Qu=C,t*  for everyu e Z.

Pu(t) = D§ ' (8)],_o t*",  for every u € X,
where i .
Dy Bi fmu(s)ds
(k+1) (1= 207 B ™)
Here k€ {0,1,--- ,m — 2} satisfies 2?512 Bttt £ 1. And the linear operator

)

u

Kp :Im(L) — dom(L) N Ker(P)

can be written by
Kp(y) =I5y y(1).

Furthermore

1K @)llons < (1 i ﬁ) Wi, for all y € Tm(Z).

Lemma 2.2.4 [2] For given e € L'[0,1], Kp(I — Q)N : X — X is completely continuous.

Theorem 2.2.1 Let f:[0,1] x R*> — R be continuous. Assume that

(A1) There exists functions a,b,c,r € L*[0,1], and constant 0 € [0,1) such that for all
(z,y) € R%t € [0,1] either

[t 2,y)| < a®)le] + b()]yl + c(B)]yl” + r(#). (2.9)

Or else

[t 2, 9)] < a(®)]a] + byl + c(t)]a]” +r(t). (2.10)

Ay) There exists constant M > 0 such that for u € dom(L), if | D& u(t)| > M for all t € [0,1],
0+

then
S5 [ 17 (scul). D)) + )] ds £ 0.

(As) There exists M* > 0 such that for any ¢ € R, if |c| > M* then either

c (i ﬁi/ [f (s, el () + es)] ds) < 0.

i=1 i

Or else
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Then, for every e € LY[0,1], the boundary value problem (2.4), has at least one solution in

C>710,1] provided that

1
a + b <:,
ol + bl < =

where C = T'(a) + 2 + ﬁ
Proof. Let
Q; = {u € dom(L)\ Ker(L)|Lu = ANwu for some A € (0,1)}.

Then for u € Qy, Lu = ANu, and Nu € Im(L), hence

i Bi / [f (s,u(s), DS‘;lu(s)) + e(s)} ds = 0.

Thus, from (A2), there exists to € [0, 1] such that !Df};lu(t)}t:to | < M. For u € €y, there holds
Dy tu € €710, 1], Dy, u € (LY(0,1)).
By Lemma 1.1.2.

DD ult) = DG, ult).

So,
D(CJXJ:IU (t)lt:O = DSVJ:IU(Q - I§+D3+u(t).

There exists ¢, € [0, 1] such that
D(?J:lu (t)li=o = Dgf“ (t)lt:to - 15+D3+U (t)lt:to

Thus,

IN

D54 )| < M+ [| D5 u(®)],

IN

M + || Lulfy

IN

M + || Nul|,. (2.11)

Again for u € Qy, u € dom(L)\ Ker(L), then (I — P)u € dom(L) N Ker(P) and LPu = 0.
Thus from Lemma 2.2.3 , we have
I = Plullcas = |KpL( = P)uflga-s

< (1 ‘ ﬁ) |1 = Pyl

= (14 g ) s
< (1—|—F(a))”NuH1. (2.12)
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From (2.11), (2.12), we have

[ullea—r < |[Pullge—r + [(1 = Pul|gas
= D5 Pulls + || Pulloe + (1 = P)ullga-s

= (T(a) + D [D§7 u®)],_y | + 17 = Phullca—

-

< (D(a)+ 1) (M + [|Null) + (1 " L) IVl

INE))
= (T(a)+1)M + (F(a) +24 ﬁ) | Nuy
= ([(a)+1)M + C||Nul;. (2.13)
Where
U:F(a)+2+ﬁ,
and
INu| = [f (t,u(t), D57 u(t)) + e(t)]
< |f (tu(t), DgTlu(t)) | + [e(t)]
< a(®)|u(t)] + b(t)| DG u(t)] + () D u()|” + r(t) + le(t)]
< a(®)[u(t) oo + b DF ut) oo + )| Dey (@) |5 +r(t) + le(t)].

If (2.9) holds, then from (2.13), we get

lellces < C [lall koo + ol | D8 ull . + lells 1D w2, + il + el ] + () + 1),

(2.14)
Thus, from ||u|le < ||u]/ca-1 and (2.14), we obtain
U o a— 0 (F(Oé) + 1)M
[ulloo € —=—- [Hle 1065 ull o + llells [ D65 ull, + el + llells + ———=——] - (2.15)
1-— C’||a||1 C

Again, from (2.14), (2.15), one has

|67l < 6[||a|| lulloe + 10013 285wl + lelly | D852, + Il + flell | + (D(@) + 1)z

C
C” T P 128l + g el 1 D6l
o w}
I [||r||1+||e||1+ =

Hence

6H0H1 . C [ (F(a) + 1)M

Doy < Lull” + — ||T|| +||6|| L= T—

H 0+ Hoo 1 — (HGH1+ HbHI) H 0+ Hoo 1 _C(HaH1+ Hbul) 1 1 C
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Since 6 € [0, 1), from the above last inequality, there exists M; > 0 such that
| D§ |, < M, (2.17)
thus from (2.16) and (2.15), there exists My > 0 such that
[ulloo < Ma, (2.18)
hence

lulloes = llulloo + || D53 el

< M+ Ms.

Therefore 2 C X is bounded.
If (2.10) holds, similar to the above argument, we can prove that ; is bounded too.
Let

Qy = {u € Ker(L)|Nu € Im(L)}.

For u € Q, there is
u € Ker(L) = {u € dom(L)|u = ct*',c € R,t € [0,1]},

and

Nu € Im(L),

thus

/ (s,cs* 7 el (@)) + e(s)] ds = 0.

=1 K3

From (A2), there exists to € [0,1] such that |D§} u(t | < M, where u € dom(L), we get

’t:to

M
le| < =——, thus Q5 is bounded in X.

M)

Next, according to the condition (A3), for any ¢ € R, if |¢| > M*, then either

< ﬁl/ (s,es*7 el (@) + e(s)] ds) < 0. (2.19)
Or else . 1
( ﬁz/ (s,es* 7 el () + e(s)] ds> > 0. (2.20)

If (2.19) holds, let

Qs ={ue Ker(L)] = AVu+ (1 -=XN)QNu=0,\€e0,1]} (2.21)
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where V : Ker(L) — Im(Q) is the linear isomorphism given by V (ct®™1) = ct*,Vc € R, t € [0, 1].

For u = cot®! € Q,

m—2 1
Aot = (1 — ) (Z 5i/ [f (s,c05*7 ", col' (@) + e(s)] ds) : (2.22)
=1 U
If A =1, then ¢y = 0. Otherwise, if |co| > M*, in view of (2.19), one has
m—2 1
co(1 =) (Z Bz/ [f (s,c08* 7, col' () + e(s)] ds) <0, (2.23)
i=1 i

which contradicts to Ac2 > 0. Thus
Q3 C {u € Ker(L)| u=ct*", |¢] < M*} (2.24)

is bounded in X.
If (2.20) holds, then define the set

Q3 ={u e Ker(L)\Wu+ (1 = NQNu=0,\ € [0,1]}, (2.25)

here V' as in above. Similar to above argument, we can show that 3 is bounded too.

In the following, we shall prove that all conditions of Theorem 1.3.12 are satisfied. Set €2 be a
bounded open set of X such that U?Zl 0 C Q.

By Lemma 2.2.4, Kp(I — Q)N : Q — X is compact, thus N is L-compact on Q. Then by above

arguments, we have
(1) Lu # ANu for every (u,A) € [(dom L\ Ker L) N 0Q2)] x (0,1);
(17) Nu ¢ Im L for every u € Ker L N 0SY;
Finally, we will prove that (i7i) of Theorem 1.3.12 is satisfied. Let
H(u,\) = £AVu+ (1 = A\)QNu. (2.26)
According to the above argument, we know
H(u,\) # 0, for all u € Ker(L) N oA. (2.27)
Thus, by the homotopy property of degree
deg (Q Nlycercty - @ N Ker(L), o) — deg(H(-,0),0 N Ker(L),0)
= deg(H(-,1),QN Ker(L),0)
= deg(£V,QNKer(L),0)
# 0.

Then by Theorem 1.3.12, Lu = Nu has at least one solution in dom(L) N Q, so that the problem
(2.4) has one solution in C*71[0,1]. m
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2.2.2 Example

Example 2.2.1 Consider the boundary value problem

D0+u() llosin( () + 5 D0+u()—|—3sin< 0+u( )) +1+cos’t 0<t<1

(2.28)
Io+u(0) =0, D§'u(l)= 6D0+u (3) - 5D0+u ()
Let By =6,0; = —H,m = %,772 = % and
ft,z,y) = Y 4 3sin < %> e(t) =1+ cos’t (2.29)
10 10
then
Yy 1
bt b=t iyl <D W gy (2.30
Again, taking a(t) = b(t) = 5, then
1 1 1
all1 + b1 = = < ~— 2.31
2

3
For any u € C2 N I3, (Ll[() 1)), For M = 52, assume

D§+u(t)‘ > M holds for any t € [0,1].
Since the continuity of D02+u then either D0+u( ) > M or D u(t) < —M holds for any t € [0,1].
If D0+u( ) > M holds for any t € [0, 1], then

f <t,u(t), D§+u(t)> fery > M 1_021 >0, (2.32)
6[1p< ), D u(s)) +e(s)] ds =5 [ [ (5:0(5), D) + e(9)] s
> [ 1 (s Dhuts)) +et)] s
> % >0
If D0+u( ) < —M hold for any t € [0,1], then
f( u(t), De, ult )) te(t) < 511_0M <0 (2.33)

1

1

6 [ 7 (5.9 Dh.uts)) +e9)] as 5 [ [1 (s,9) D)) + (9] s

< [1U( <>D%m>)+awym

N

IA
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Thus, the condition (A2) holds. Again, taking M* = %, for any k € R, if |c| > M*, we have

c (6/31 [f (s,cs%,cr G)) —i—e(s)} ds—5/; lf (s,csé,cr (g)) +e(s)} ds) >0 (2.34)

So, the condition (A3) holds. Thus, with Theorem 2.2.1, the boundary value problem (2.28), has

-

at least one solution in C’%[O, 1].
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