République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique جامعة الجيلالي بونعامة خميس مليانة Université Djilali Bounaâma de Khemis Miliana Faculté des Sciences et de la Technologie Département des Sciences de la Matière

Mémoire de fin d'étude En vue de l'obtention d'un diplôme de **Master** en Physique **Spécialité**: Physique Théorique

Thème :

Actualisation des paramètres de la formule de Masse de Bethe-Weizsäcker, Applications

Devant le jury composé de :

- M. DOUICI Mohamed

- M. BENZAID Djelloul

- M. BOUKABCHA Hocine

Président Encadreur Examinateur

Présenté par : BENAZZA Samira GHALMI Imane

Année universitaire : 2018 / 2019

Nédicace

Je dédie ce modeste travail :

A ma source de bonheur, la flamme de mon cœur, ma vie et mon bonheur, elle s'est toujours sacrifiée pour me voir réussir, maman.

A mon exemple éternel, mon soutien moral et source de joie et de bonheur, mon père.

A mes sœurs : Sara, Anissa, Amina,malika, Aicha , Yassemine

Et mon frère: Mohamed Amin Les enfants de ma sœur : Safa, Marwa

Samira

Nédience

Je dédie ce modeste travail :

A ma source de bonheur, la flamme de mon cœur, ma vie et mon bonheur, elle s'est toujours sacrifiée pour me voir réussir, maman.

A mon exemple éternel, mon soutien moral et source de joie et de bonheur, mon père.

A mes sœurs : Sihame, Akila, Oumelkhir, Halima,

Et mon frère: Mohamed

Les enfants de mes sœurs: Hiba,Farah, Marwa, Abd Rahim, Haytham, Abd Rahmane

IMANE

En premier lieu, Nous remercions Dieu notre création qui nous a donné la santé et la volonté d'entamer et terminer ce mémoire.

Nous tenons à exprimer notre profonde gratitude et nos sincères remerciements

Tous ceux qui ont contribué, de prés ou de loin à l'élaboration de ce mémoire de fin d'étude.

Aussi, nous tenons à remercier infiniment :

* Nos cher parent pour leur soutiens au long de nos étude.

Dr. BENZAID Djeloul notre encadreur qui nous a accordé son soutien, son aide indéfectible surtout sa patience et sa gentillesses.

Nous remercions tous les membres du jury pour avoir accepté de juger ce travail et de participer à la soutenance de ce mémoire, le docteur DOUICI Mohamed et le Dr. BOUKABCHA Hocine.

KhemisMiliana, Juillet 2019

Résumé

Ce travail a pour but d'actualiser de la formule de masse de Bethe-Weizsäcker, Pour cela, il était nécessaire Un ajustement des données expérimentales des énergies de liaison au sens des moindres carrés sur la base des dernières mises à jours des masses atomiques d'AMPE2016 a été considéré, le nouvel ensemble de paramètres de cette formule, obtenu dans ce travail, peut réduire l'erreur relative dans les énergies de liaison lorsqu'il est calculé dans le cadre de la formule de masse. Un traitement spécial a été fait pour les noyaux moyens et lourds ayant des masses atomiques supérieures à 50.

Mots Clés : Formule de masse, énergie de liaison, les moindres carrés

ملخص

الهدف من هذا العمل هو تحديث صيغة الكتلة لبث-فايتسكر، ولهذا الغرض ،كان من الضروري استعمال طريقة المربعات الصغرى مع أحدث المعطيات المتعلقة بطاقات ربط الانوية نقصد بذلك (AME2016). تمكن القيم الجديدة التي تم الحصول عليها في هذا العمل من التقليل من الخطأ النسبي في طاقات الربط عند حسابها كجزء من صيغة الكتلة. كما قمنا بإجراء معالجة خاصة للأنوية المتوسطة والثقيلة التي لها كتل ذرية أكبر من .50

الكلمات المفتاحية : صيغة الكتلة، طاقة الربط، طريقة المربعات الصغرى

Abstract

The aim of this work is to upddate the Bethe-Weizsäcker mass formula. To this end, it was necessary to adjust the experimental data of least-squares binding energies on the basis of the latest atomic mass updates. AMPE2016 has been considered, the new set of parameters of this formula, obtained in this work, can reduce the relative error in binding energies when calculated as part of the mass formula. Special treatment has been made for medium and heavy cores having atomic masses greater than 50.

Records : mass formula , binding energies, least-squares.

Table des matières

Τa	able o	des figures	8											
Li	ste d	les tableaux	9											
1	For	ormule Semi-Empirique de Masse de Bethe-Weizsäcker												
	1.1	Énergie de volume	15											
	1.2	Énergie de surface	15											
	1.3	Énergie coulombienne	16											
	1.4	Terme d'asymétrie	17											
	1.5	Terme d'appariement	18											
2	Mét	thodes Utilisées	21											
	2.1	Méthode des Moindres carrés	21											
		2.1.1 Exemple d'application	25											
	2.2	Méthode de Gauss	26											
		2.2.1 Exemple d'application	29											
		2.2.2 SUBROUTINE GAUSS	30											
3	Dét	ermination des Paramètres de la formule de masse de Bethe-Weizsäcker	33											
	3.1	Données utilisées dans ce travail	38											
	3.2	Résultats	40											
	3.3	Discussion et Comparaison des résultats	40											
	3.4	Energie de liaison calculée	40											
	3.5	Erreur relative	42											

Bibliographie

48

Table des figures

1.1	Contribution de chaque terme dans la formule de Bethe-Weizsäcker pour l'énergie	
	de liaison par nucléon, en MeV. Les paramètres utilisés sont ceux de l'éq. $(1.18),$	
	et la valeur de Z choisie pour chaque valeur de A est celle qui maximise $B=A.[6]$	19
2.1	fonction linéaire $y = ax + b$	22
2.2	fonction exponentielle $y = ax^b$	22
2.3	Exemple	26
3.1	Énergie de liaison par nucléon en fonction de A	41
3.2	Comparaison des énergies de liaison par nucléon expérimentales[10] (les pellets)	
	et des valeurs calculée à partir de la formule de Bethe-Weizsäcker (les sphères)	
	dans touts les noyaux.	41
3.3	Différant contribution de l'énergie de liaison par nucléon	42
3.4	Erreur relative de l'énergie de liaison par nucléon en fonction de A	43
3.5	Erreur relative de l'énergie de liaison par nucléon en fonction de A.[11]	44
3.6	Comparaison des erreurs relatives que nous avons calculés et de référence [11]	44

Liste des tableaux

2.1	Exemple d'application	25
2.2	Schéma de division unique	29
2.3	Résolution d'un système d'après le schéma de division unique	30
3.1	Table des données nucléaire de la référence[10]	39
3.2	Quelque valeurs des énergies de liaison calculées et expérimentales avec l'erreur	
	relative	45

Introduction

Introduction

Le noyau, comme l'atome est un objet composite. Ses constituants sont des nucléons ${\cal Z}$ protons et N neutrons.

La structure nucléaire permet de comprendre pourquoi et comment les protons et les neutrons sont maintenus en cohésion dans un noyau et étudier les phénomènes générés.

Les outils les plus utilisés en physique nucléaire est le modèle de la goutte liquide, élaboré par Carl Friedrich von Weizsäcker (1935) et Niels Bohr (1937) permettant de retrouver certaines propriétés des noyaux, comme l'énergie de liaison. Le modèle conduit à une excellente paramétrisation des énergies de liaison.

La première formule de masse développée est celle du modèle de la goutte liquide de Bethe et Weizsäcker permet de retrouver la masse d'un noyau, qui ont considérés la masse d'un noyau sphérique comme une goutte de liquide incompressible.

Ce travail est une nouvelle contribution pour l'amélioration de la formule semi-empirique de masse de Bethe-Weizsäcker, permet une actualisation des paramètres fondamentaux, à savoir de volume, de surface, de Coulomb, d'asymétrie et d'appariement.

Dans le cadre de ce mémoire, on s'est particulièrement intéressé au dernier terme de cette formule.

Le premier chapitre, contient un rappel sur la formule semi-empirique de Bethe-Weizsäcker, nous avons donné la forme de chaque terme et leur explication, à la fin, nous allons donné la formule final de l'énergie de liaison des noyaux.

Dans le deuxième chapitre, nous exposons les méthodes que nous utilisons dans notre travail. La première méthode est la méthode des moindres carrés qui permet d'aboutir un système d'équations linéaires à cinq inconnus . La deuxième méthode est la méthode de Gauss, permet de résolution de systèmes d'équations linéaires. Nous allons exposé en détail les deux méthodes.

Le dernier chapitre présente les résultats que nous allons obtenus par différents méthodes, la détermination des paramètres de la formule de Bethe-Weizsäcker, basé sur des dernières mises à jours des masses atomiques d'AME2016 sur une comparaison est faite entre les calculs.

Enfin, ce mémoire se termine par une conclusion.

Formule Semi-Empirique de Masse de Bethe-Weizsäcker

Chapitre

Formule Semi-Empirique de Masse de Bethe-Weizsäcker

Les formules semi-empiriques de masse permettent de calculer l'énergie de liaison des noyaux atomiques. La première formule de masse développée est celle du modèle de la goutte liquide. En se basant sur cette idée Bethe et Weizsäcker établirent une expression semi-empirique permettant le calcul de la masse exact d'un noyau moyennant les hypothèses suivantes[1] :

 Le noyau atomique est une sphère semblable à une goutte liquide incompressible de rayon R donné par :

$$R = r_0 A^{\frac{1}{3}} \tag{1.1}$$

 $r_0 = cte$, paramètre de rayon nucléaire, A est le nombre de masse.

- Les forces nucléaires sont saturées et possèdent une courte portée (court rayon d'action); autrement dit un nucléon n'interagit qu'avec les nucléons les plus proches.
- Les forces nucléaires sont indépendantes de la charge nucléaire; autrement dit les interactions proton-proton, neutron-neutron ou proton-neutron sont identiques
 La masse atomique des éléments en termes d'énergie stockée dans le noyau écrit comme ci-dessous :[2]

$$m \begin{pmatrix} A \\ Z \end{pmatrix} = Zm_{H} + Nm_{n} - \frac{1}{c^{2}}B(Z, A)$$
(1.2)

 Z, m_H et m_n sont le nombre atomique, masse du proton et masse du neutron respec-

tivement. B(Z, A) est l'énergie de liaison d'un noyau. L'énergie de liaison totale d'un noyau est la contribution de plusieurs aspects différents. On peut mettre cette énergie sous la forme générale suivante :

$$B(Z, A) = B_0 + B_1 + B_2 + \cdots$$
(1.3)

Dans le paragraphe suivant les différentes contribution sont présentées.

1.1 Energie de volume

C'est le terme principal qui résulte des forces d'interaction nucléaire (attractives). En raison de la saturation de ces forces, l'énergie de liaison qui en résulte est la même pour tous les nucléons. Si l'on suppose qu'une énergie moyenne par nucléon, a_v , est affectée pour chaque nucléon, une première approximation pour l'énergie de liaison totale est obtenue si l'on regroupe tous les nucléons du noyau dans le volume le plus petit. Cette énergie nucléaire est proportionnelle au volume [3].

$$B_0 = a_v A \tag{1.4}$$

1.2 Énergie de surface

Les nucléons qui sont visualisés comme étant à la surface nucléaire ont moins de voisins proches que les nucléons qui sont profonds dans le volume nucléaire. Nous pouvons s'attendre à un déficit d'énergie de liaison pour ces nucléons de surface. Nous interprétons le terme d'énergie d'échange B comme "énergie de volume" représentant la liaison des nucléons qui sont totalement dans le volume nucléaire. Alors nous nous déduisons un terme de correction pour les nucléons qui stabilisent la surface nucléaire. Le rayon d'un noyau est donné par $R = r_0 A^{\frac{1}{3}}$ sous l'hypothèse d'une densité constante. Si la gamme des forces nucléaires est b, nous pouvons prendre le rayon effectif d'un nucléon comme environ b/2 si les nucléons sont supposés être essentiellement sans contact avec les autres. Alors le volume d'un noyau serait :[2]

$$\frac{4\pi}{3}R^3 = \frac{4\pi}{3}r_0^3 A = \frac{4\pi}{3}\left(\frac{b}{2}\right)^3 A \tag{1.5}$$

et le rayon effectif d'un nucléon b/2 est environ égal à celui du rayon nucléaire unité $r_0 \simeq 1, 5 \times 10^{-13} cm$. La surface du noyau est :

$$4\pi R^2 = 4\pi r_0^2 A^{\frac{2}{3}} \tag{1.6}$$

Alors le nombre de nucléons sur la surface serait approximativement :

$$\frac{4\pi r_0^2 A^{\frac{2}{3}}}{\pi r_0^2} = 4A^{\frac{2}{3}} \tag{1.7}$$

Ainsi pour les noyaux légers, presque tous les nucléons sont à la surface, alors que pour les noyaux lourds environ la moitié des nucléons sont à la surface et la moitié sont dans la partie intérieure du noyau. Nous introduisons un terme de correction négatif B_1 représentant la perte d'énergie de liaison par les nucléons à la surface

$$B_1 = -a_s A^{\frac{2}{3}} \tag{1.8}$$

où a_s est une constante arbitraire à évaluer à partir de données empiriques. L'indice s signifie "énergie de surface". Parfois cette énergie de surface est appelée "tension de surface" par analogie avec ces deux concepts dans les liquides ordinaires. Il faut cependant se rappeler que "énergie de surface" est généralement une quantité supérieure à "tension de surface" même si les deux ont les mêmes dimensions physiques .

1.3 Énergie coulombienne

Cependant, comme les noyaux sont chargés, l'énergie de liaison doit aussi être diminuée par l'énergie potentielle électrostatique.[4] Par exemple, une sphère uniformément chargée de charge q et de rayon R crée un champ électrique donné par

$$\mathbf{E} = \begin{cases} \frac{qr}{4\pi a^3} & (r < R)\\ \frac{q}{4\pi r^2} & (r > R) \end{cases}$$
(1.9)

et l'énergie emmagasinée dans ce champ dans tout l'espace est

$$U = \frac{1}{2} \int d^3 r \mathbf{E}^2 = \frac{3}{20\pi} \frac{q^2}{R}$$
(1.10)

De toute manière, quelle que soit la distribution de charge à l'intérieur de la sphère, cette énergie doit être proportionnelle au carré de la charge et inversement proportionnelle au rayon de la sphère (ou à une taille caractéristique), ne serait-ce que pour des raisons dimensionnelles. Cette énergie électrostatique est l'énergie nécessaire pour assembler la distribution de charge à partir de constituants initialement infiniment éloignés. On ajoute donc un terme électrostatique à l'énergie de liaison nucléaire, dit terme de Coulomb, proportionnel à la charge au carré (Z^2) et inversement proportionnel au rayon ($A^{1/3}$) du noyau :

$$B_2 = -a_c \frac{Z^2}{A^{1/3}} \tag{1.11}$$

Dans ce cas l'énergie de liaison totale va prendre la formule suivante :

$$B(A,Z) = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}}$$
(1.12)

1.4 Terme d'asymétrie

Les trois contributions à l'énergie de liaison que nous avons identifiées jusqu'ici proviennent toutes d'une forme d'énergie potentielle.[4] Or l'énergie cinétique des constituants des nucléons va aussi diminuer l'énergie de liaison. Cette contribution doit être évaluée en mécanique quantique. Le modèle utilisé à cette fin est celui d'un gaz de fermions dégénéré. Un calcul soigné, dans le cadre de ce modèle, montre que l'énergie de liaison doit être diminuée encore d'un terme proportionnel à $(N - Z)^2/A$. On peut intuitivement comprendre la nécessité de ce terme par l'argument suivant. En supposant qu'on puisse représenter les états quantiques d'un noyau comme ceux d'un atome, c'est-à-dire par un ensemble de niveaux d'énergie occupés par des particules obéissant au principe d'exclusion de Pauli, on arrive à la conclusion que, pour une valeur fixe de A, ce sont les noyaux qui ont N = Z qui ont la plus basse énergie. En effet, les protons et les neutrons sont des fermions de spin $\frac{1}{2}$ qui obéissent au principe d'exclusion. On ne peut donc placer plus de deux protons (de spins opposés) dans un même niveau, ou plus de deux neutrons, mais les protons et les neutrons ne s'excluent pas mutuellement. Un niveau d'énergie donné peut donc contenir au plus 2 protons et 2 neutrons. Si un noyau contient trop de protons par rapport au nombre de neutrons, alors le dernier niveau occupé est plus élevé, en raison de l'accumulation des protons et de leur exclusion mutuelle dans les niveaux. La même chose se dit des novaux qui contiennent un nombre trop élevé de neutrons. La modélisation

quantitative de cet effet se fait dans le cadre d'un modèle très simple où les nucléons sont traités comme des particules libres dans un volume restreint (celui du noyau). L'énergie de ce gaz de nucléons comporte deux termes (en supposant que N - Z n'est pas trop grand) : (i) un terme de volume proportionnel à A et qui s'ajoute au terme de volume déjà obtenu plus haut et (ii) une correction en $(N - Z)^2/A$, qui définit ce qu'on appelle le terme d'asymétrie.

$$B_3 = -a_a \frac{(N-Z)^2}{A} = -a_a \frac{(A-2Z)^2}{A}$$
(1.13)

$$B(A,Z) = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(A-2Z)^2}{A}$$
(1.14)

1.5 Terme d'appariement

Enfin, on ajoute un dernier terme à l'énergie de liaison, lié à l'observation que cette énergie est toujours plus grande quand le nombre de protons ou le nombre de neutrons est pair. On note cette contribution

$$B_{4} = \begin{cases} +\delta \text{ pour Z pair et N pair} \\ -\delta \text{ pour Z impair et N impair} \\ \delta = 0 \text{ pour A impair} \end{cases}$$
(1.15)

et δ est le terme d'appariement donné par[2] :

$$\delta = a_p A^{-3/4} \tag{1.16}$$

dans notre travail on adopte une forme plus récente de l'énergie d'appariement δ définie par[5] :

$$\delta(\mathbf{A}, \mathbf{Z}) = a_p A^{-1/2} \tag{1.17}$$

le terme B_4 intervient comme une contribution à l'énergie de liaison B, qui augmente celle-ci pour les noyaux pair-pair (les plus stables), la diminue pour les noyaux impair-impair (les moins stables, en général) et qui n'a pas d'influence ($\delta = 0$) sur les noyaux de A impair possédant un nombre pair d'une espèce de nucléons et un nombre impair de l'autre espèce.

Enfin en combinant ces différents termes, l'expression (1.3) donnant B d'un noyau (A, Z) peut

être définie par :

$$B(A,Z) = a_v A - a_s A^{2/3} - a_c Z^2 A^{-1/3} - a_a (A - 2Z)^2 / A \pm \delta(A)$$
(1.18)

et l'énergie moyenne de liaison par nucléons s'en déduit en divisant par A. L'importance relative des différents termes, à part celui d'appariement, est montrée sur la figure **1.1**

FIGURE 1.1 - Contribution de chaque terme dans la formule de Bethe-Weizsäcker pour l'énergie de liaison par nucléon, en MeV. Les paramètres utilisés sont ceux de l'éq. (1.18), et la valeur de Z choisie pour chaque valeur de A est celle qui maximise B=A.[6]

Méthodes Utilisées

Chapitre

Méthodes Utilisées

Dans ce chapitre, nous aborderons deux méthodes mathématique que nous avons utilisées pour la détermination des cinq paramètres. La méthode des moindres carrés qui permet de construire un système d'équations linéaires dont les inconnues sont les paramètres de la formule de masse. La méthode de Gauss qui permet la résolution du système précédent.

2.1 Méthode des Moindres carrés

Supposons que l'on doive utiliser les résultats de l'expérience pour établir la dépendance fonctionnelle de la grandeur y de la grandeur x[7]:

$$y = \phi(x) \tag{2.1}$$

Supposons encore que les expériences réalisées nous aient fourni n valeurs de la fonction y pour les valeurs correspondantes de l'argument. Les résultats peuvent être représentés dans la table suivante :

x	x_1	x_2	 x_n
y	y_1	y_2	 y_n

On établit la forme de la fonction (2.1) soit à partir de considération théoriques, soit sur la base du caractère de la disposition sur le plan de coordonnées des points correspondant aux valeurs expérimentales. Nous appellerons ces "points expérimentaux". Supposons, par exemple, que les points expérimentaux soient disposés sur le plan de coordonnées comme l'indique la **Fig. ??** Tenant compte du fait que les résultats de l'expérience sont entachés d'erreurs il est naturel de supposer que la fonction cherchée $y = \phi(x)$ peut être recherchée sous forme de la fonction linéaire y = ax + b.

FIGURE 2.1 – fonction linéaire y = ax + b.

Si les points expérimentaux sont disposés comme l'indique la Fig 2.2, il est naturel de rechercher la fonction $y = \phi(x)$ sous la forme $y = ax^b$, etc.

FIGURE 2.2 – fonction exponentielle $y = ax^b$.

Quand la forme de la fonction $y = \phi(x, a, b, c, ...)$ est adoptée, il reste à choisir les valeurs des paramètres a,b,c,... de sorte que la fonction obtenue décrive dans un certain sens de la meilleure manière possible le processus considéré. Une méthode largement répandue de résolution de ce problème est la méthode dite des moindres carrés, elle consiste en ce qui suit. Considérons la somme des carrés des différences entre les valeurs expérimentales y_i et celles de la fonction $\phi(x, a, b, c, ...)$ aux points correspondants :

$$\chi^{2}(a, b, c, \ldots) = \sum_{i=1}^{n} \left[y_{i} - \phi \left(x_{i}, a, b, c, \ldots \right) \right]^{2}$$
(2.2)

Choisissons les paramètres a,b,c,... de manière que cette somme ait la plus petite valeur possible :

$$\chi^{2}(a, b, c, \ldots) = \sum_{i=1}^{n} \left[y_{i} - \phi \left(x_{i}, a, b, c, \ldots \right) \right]^{2} = \min$$
(2.3)

Le problème se ramène ainsi à trouver les valeurs des paramètres a,b,c,... pour lesquelles la fonction $\chi(a, b, c, ...)$ admet un minimum. On donne :

$$\frac{\partial \chi^2}{\partial a} = 0, \frac{\partial \chi^2}{\partial b} = 0, \frac{\partial \chi^2}{\partial c} = 0, \dots$$
(2.4)

Ou sous forme détaillée :

$$\sum_{i=1}^{n} [y_i - \phi(x_i, a, b, c, \ldots)] \frac{\partial \phi(x_i, a, b, c, \ldots)}{\partial a} = 0$$

$$\sum_{i=1}^{n} [y_i - \phi(x_i, a, b, c, \ldots)] \frac{\partial \phi(x_i, a, b, c, \ldots)}{\partial b} = 0$$

$$\sum_{i=1}^{n} [y_i - \phi(x_i, a, b, c, \ldots)] \frac{\partial \phi(x_i, a, b, c, \ldots)}{\partial c} = 0$$

$$(2.5)$$

IL y a ici autant d'équations que d'inconnues. En chaque cas concret on étudie le problème de l'existence de la solution du système d'équation (2.5) et de l'existence du minimum de la fonction $\chi(a, b, c, ...)$. Considérons certains cas de détermination de la fonction $y = \phi(x, a, b, c, ...)$. 1. Soit y = ax + b la fonction $\phi(a, b)$ s'écrit alors dans ce cas :

$$\chi^2(a,b) = \sum_{i=1}^n \left[y_i - (ax_i + b) \right]^2$$
(2.6)

C'est une fonction des deux variable a et b (x_i et y_i sont des nombres donnés dans table(2.1)),

par conséquent on a :

$$\frac{\partial \chi^2}{\partial a} = -2 \sum_{i=1}^n [y_i - (ax_i + b)] \quad x_i = 0$$

$$\frac{\partial \chi^2}{\partial b} = -2 \sum_{i=1}^n [y_i - (ax_i + b)] \quad = 0$$
(2.7)

autrement dit, le système d'équation (2.5) s'écrit dans ce cas :

$$\left. \sum_{i=1}^{n} y_{i} x_{i} - a \sum_{i=1}^{n} x_{i}^{2} - b \sum_{i=1}^{n} x_{i} = 0 \\
\sum_{i=1}^{n} y_{i} - a \sum_{i=1}^{n} x_{i} - bn = 0 \\
\right\}$$
(2.8)

Nous avons obtenu un système de deux équations linéaires à deux inconnues, a et b. Il est évident, que ce système possède une solution déterminée et que pour les valeurs trouvées de a et b la fonction $\chi(a, b)$ admet un minimum.

2. Supposons, que l'on ait adopté en qualité de fonction d'approximation le trinôme du second degré $y = ax^2 + bx + c$ dans ce cas l'expression (2.2) s'écrit :

$$\chi^{2}(a,b,c) = \sum_{i=1}^{n} \left[y_{i} - \left(ax_{i}^{2} + bx_{i} + c \right) \right]^{2} = 0$$
(2.9)

C'est une fonction des trois variables a, b et c. Le système d'équations(2.5) devient :

$$\sum_{i=1}^{n} \left[y_i - \left(a x_i^2 + b x_i + c \right) \right] x_i^2 = 0$$

$$\sum_{i=1}^{n} \left[y_i - \left(a x_i^2 + b x_i + c \right) \right] x_i = 0$$

$$\sum_{i=1}^{n} \left[y_i - \left(a x_i^2 + b x_i + c \right) \right] = 0$$
(2.10)

Ou sous forme développée :

$$\sum_{i=1}^{n} y_i x_i^2 - a \sum_{i=1}^{n} x_i^4 - b \sum_{i=1}^{n} x_i^3 - c \sum_{i=1}^{n} x_i^2 = 0$$

$$\sum_{i=1}^{n} y_i x_i - a \sum_{i=1}^{n} x_i^3 - b \sum_{i=1}^{n} x_i^2 - c \sum_{i=1}^{n} x_i = 0$$

$$\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i^2 - b \sum_{i=1}^{n} x_i - cn = 0$$

$$(2.11)$$

Nous obtenons un système d'équations linéaires pour déterminer les inconnues a, b et c. Il découle du caractère du problème, que le système possède une solution déterminée et que pour les valeurs obtenues a, b et c, la fonction $\chi(a, b, c)$ admet un minimum.

2.1.1 Exemple d'application

Supposons a guise d'exemple, que l'expérience nous ait fourni cinq valeurs de la fonction cherché $y = \phi(x)$ pour les cinq valeurs de l'argument (n=5), ainsi que l'indique le tableau.

x	1	2	3	4	5		
y	500	580	650	690	740		

TABLE 2.1 – Exemple d'application

Nous recherchons la fonction ϕ sous forme de la fonction linéaire y = ax + b. Composons l'expression de $\chi(a, b)$:

$$\chi(a,b) = \sum_{i=1}^{5} [y_i - (ax_i + b)]^2$$

Pour composer le système(2.2) servant à déterminer les coefficients a et b calculons au préalable :

$$\sum_{i=1}^{5} y_1 x_i = 10070, \sum_{i=1}^{4} x_i^2 = 55, \sum_{i=1}^{4} x_i = 15, \sum_{i=1}^{4} y_i = 3160$$

Le système (2.2) s'écrit alors :

$$\left. \begin{array}{c} 10070 - 55a - 15b = 0\\ 3160 - 15a - 5b = 0 \end{array} \right\}$$

Résolvant ce système nous trouvons a et b :

a = 59, b = 455. La droite recherché Fig. (2.3) est :

$$y = 59x + 455$$

25

FIGURE 2.3 – Exemple.

2.2 Méthode de Gauss

La méthode la plus usitée de résolution de système d'équation linéaires est l'algorithme d'élimination successive des inconnues. Cette méthode s'appelle méthode de Gauss. Pour simplifier les raisonnements, bornons-nous à considérer un système de quatre équations à quatre inconnues[8].

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + a_{14}x_{4} = a_{15}$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + a_{24}x_{4} = a_{25}$$

$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} + a_{34}x_{4} = a_{35}$$

$$a_{41}x_{1} + a_{42}x_{2} + a_{43}x_{3} + a_{44}x_{4} = a_{45}$$

$$(2.12)$$

Soit $a_{11} \neq 0$ (élément générateur). Divisant les coefficients de la première équation du système (2.10) par a_{11} , on obtient :

$$x_1 + b_{12}x_2 + b_{13}x_3 + b_{14}x_4 = b_{15} (2.13)$$

où :

$$b_{1j} = \frac{a_{1j}}{a_{11}} (j > 1)$$

En appliquant l'équation (2.13) on élimine facilement l'inconnue du système (2.12). A cette fin il suffit de soustraire de la deuxième équation de (2.12) le produit de l'équation (2.13) par a_{21} , de la troisième équation de (2.12) le produit de l'équation (2.13) par a_{31} , etc. Il en résulte un système de trois équations

$$\begin{cases} a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + a_{24}^{(1)}x_4 = a_{25}^{(1)} \\ a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 + a_{34}^{(1)}x_4 = a_{35}^{(1)} \\ a_{42}^{(1)}x_2 + a_{43}^{(1)}x_3 + a_{44}^{(1)}x_4 = a_{45}^{(1)} \end{cases}$$
(2.14)

dont les coefficients $a_{ij}^{(1)}$ avec $(i, j \ge 2)$ se calculent d'après la formule :

$$a_{ij}^{(1)} = a_{ij} - a_{i1}b_{1j} (i, j \ge 2)$$

Après avoir divisé ensuite les coefficients de la première équation du système (2.14) par "l'élément générateur" $a_{22}^{(1)} \neq 0$, on a l'équation :

$$x_2 + b_{23}^{(1)}x_3 + b_{24}^{(1)}x_4 = b_{25}^{(1)}$$
(2.15)

où

$$b_{2j}^{(1)} = \frac{a_{2i}^{(1)}}{a_{22}^{(1)}}, (j > 2)$$

Éliminons maintenant x_2 de la même façon que x_1 pour aboutir au système :

$$\begin{cases} a_{33}^{(2)}x_3 + a_{34}^{(2)}x_4 = a_{35}^{(2)} \\ a_{43}^{(2)}x_3 + a_{44}^{(2)}x_4 = a_{45}^{(2)} \end{cases}$$
(2.16)

où

$$a_{ij}^{(2)} = a_{ij}^{(1)} - a_{i2}^{(1)}b_{2j}^{(1)}, (i, j \ge 3)$$

les coefficients de la première équation de l'équation (2.16) divisés par "l'élément générateur" $a_{33}^{(2)} \neq 0$

$$x_3 + b_{34}^{(2)} x_4 = b_{35}^{(2)} \tag{2.17}$$

où

$$b_{3j}^{(2)} = \frac{a_{3j}^{(2)}}{a_{33}^{(2)}}, (j > 3)$$

En éliminant maintenant d'une façon analogue x_3 du système l'équation (2.16),
on obtient :

$$a_{44}^{(3)}x_4 = a_{45}^{(3)} \tag{2.18}$$

où

$$a_{ij}^{(3)} = a_{ij}^{(2)} - a_{i3}^{(2)}b_{3j}^{(2)}, (i, j \ge 4)$$

D'où

$$x_4 = \frac{a_{45}^{(3)}}{a_{44}^{(3)}} = b_{45}^{(3)} \tag{2.19}$$

Les autres inconnues sont données successivement par les équations (2.17) et (2.15) et (2.13):

$$\begin{cases} x_3 = b_{35}^{(2)} - b_{34}^{(2)} x_4 \\ x_2 = b_{25}^{(1)} - b_{24}^{(1)} x_4 - b_{23}^{(1)} x_3 \\ x_1 = b_{15} - b_{14} x_4 - b_{13} x_3 - b_{12} x_2 \end{cases}$$
(2.20)

Ainsi la procédure de résolution d'un système linéaire d'après la méthode de Gauss se ramène à la construction d'un système équivalent (2.13), (2.15), (2.17) et (2.19) à matrice triangulaire. la condition nécessaire et suffisante pour l'application de la méthode est que tous les " éléments générateurs " soient non nuls. Il est commode de ranger les résultats des calculs dans le tableau (2.2). Le schéma donné par ce tableau s'appelle schéma de division unique. La procédure de recherche des coefficients $b_{ij}^{(j-1)}$ du système triangulaire s'appelle dans le cas général marche directe, celle d'obtention des valeurs des inconnues, marche inverse. La marche directe débute par l'inscription des coefficients du système, y compris des termes constants (section A). Sur la dernière ligne de la section A figure le résultat de la division de la première ligne de la section par "l' élément générateur" a_{11} . Les éléments $a_{ij}^{(1)}(i, j \ge 2)$ de la section suivante A_1 du schéma sont égaux aux éléments correspondants a_{ij} de la section précédente diminués du produit de leurs "projection" par les colonnes de la section A qui portent l'élément 1 (c'est-à-dire par la première colonne et la dernière ligne). La dernière ligne de la section A_1 s'obtient en divisant la première ligne de la section par "l'élément générateur" $a_{22}^{(1)}$. D'une façon analogue on construit les sections suivantes. La marche directe s'arrête lorsque'on atteint la section composée d'une ligne sans compter la ligne transformée (dans le cas concerné c'est la section A_3). La marche inverse ne fait appel qu'aux lignes des section A_i qui contiennent les unités (lignes marquées) en commençant par la dernière. L'élément $b_{45}^{(3)}$ de la section A_3 figurant à l'intersection de x_4 . Ensuite, toutes les autres inconnues $x_i(i = 3; 2; 1)$ se trouvent de proche en proche en retranchant du terme constant de la ligne marquée la somme des produits de ses coefficients par les valeurs correspondantes des inconnues trouvées auparavant. Les valeurs des inconnues sont portées successivement sur la dernière section B. Les unités qui y figurent aident à trouver

pour x_i les coefficients respectifs dans les lignes marquées.

x_1	x_2	x_3	x_4	termes constantes	\sum	sections du schéma
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}	
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	А
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}	
1	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}	
	$a_{22}^{(1)}$	$a_{23}^{(1)}$	$a_{24}^{(1)}$	$a_{25}^{(1)}$	$a_{26}^{(1)}$	
	$a_{32}^{(1)}$	$a_{33}^{(1)}$	$a_{34}^{(1)}$	$a_{35}^{(1)}$	a_{36}^1	A_1
	$a_{42}^{(1)}$	$a_{42}^{(1)}$	$a_{44}^{(1)}$	$a_{45}^{(1)}$	a_{4c}^{1}	_
	1	h_{22}^{43}	b_{22}^{44}	$b_{a}^{(1)}$	h_{2}^{1}	
	-	(2)	(23)	(24)	(25)	
		a_{33}	a_{34}	a_{35}	a_{36}	
		$a^{(2)}$	$a_{44}^{(2)}$	$a_{45}^{(2)}$	$a_{46}^{(2)}$	A_2
		1	$b_{34}^{(2)}$	$b_{35}^{(2)}$	$b_{36}^{(2)}$	
			$a_{44}^{(3)}$	$a_{45}^{(2)}$	$a_{46}^{(3)}$	
			1	$b_{45}^{(3)}$	$b_{46}^{(3)}$	A_3
				x_4	x_4	
			1	x_4	\bar{x}_4	
		1		x_3	x_3	В
	1			x_2	x_2	
1				$ $ x_1	x_1	

TABLE 2.2 – Schéma de division unique

2.2.1 Exemple d'application

Soit le système à 4 inconnues suivant :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 5\\ x_1 - x_2 + x_3 + x_4 = 3\\ x_1 + x_2 - x_3 + x_4 = 3\\ x_1 + x_2 + x_3 - x_4 = 1 \end{cases}$$

solution

portons sur la section A du table. (2.2) la matrice des coefficients du système, ses termes constante et les sommes de contrôle. Inscrivons ensuite la dernière (cinquième) ligne de la section A en divisant la première ligne par 2.25 (par a_{11}). Passons maintenant à la section du tableau. Prenons un élément quelconque de la section A (absent dans la première ligne) et retranchons le produit du premier élément de sa ligne par le dernier élément de sa colonne pour inscrire le résultat dans la case correspondante de la section A_1 du schéma. Par exemple, en choisissant $a_{43} = 1$, on aura :

$$a_{43}^{(1)} = a_{43} - a_{41}b_{13} = 1 - (1)(1) = 0$$

Pour obtenir la dernière ligne de la section , divisons tous les éléments de la première ligne de cette section par $a_{22}^{(1)} = -2$. Par exemple, $b_{23}^{(1)} = \frac{a_{23}^{(1)}}{a_{22}^{(1)}} = \frac{0}{-2} = 0$ on remplit d'une façon analogue les autre sections du tableau par exemple $a_{44}^{(2)} = a_{44}^{(1)} + a_{42}^{(1)}b_{24}^{(1)} = -2 + 0(-2) = -2$

2.2.2 SUBROUTINE GAUSS

Ce module est un sous programme fortran toujours appelé par un CALL à partir d'un autre module de type programme où sous programme.conçue spécialement pour résoudre ces types d'équations linéaires par la méthode de Gauss. L'introduction des paramètres constants du système (2.21) dans la SUBROUTINE permet d'obtenir les résultats du tableau (2.3). Les valeurs des inconnues (marche inverse) x_1, x_2, x_3, x_4 est :

x_1	x_2	x_3	x_4	termes constantes	\sum	sections du schéma
1	1	1	1	5	9	
1	-1	1	1	3	5	
1	1	-1	1	3	5	А
1	1	1	-1	1	3	
1	1	1	1	5	9	
	-2	0	0	-2	-4	
	0	-2	0	-2	-2	
	0	0	-2	-4	-4	A_1
	1	0	0	1	2	
		-2	0	-2	-2	
		0	-2	-4	-4	A_2
		1	0	1	1	
			-2	-4	-4	
			1	2	0	A_3
				2	2	
			1	2	3	
		1		1	2	В
	1			1	2	
1				1	2	

TABLE 2.3 – Résolution d'un système d'après le schéma de division unique.

 $x_1 = 1$ $x_2 = 1$ $x_3 = 1$ $x_4 = 2$

La matrice triangulaire supérieure obtenue :

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 3 \\ 1 \end{pmatrix}$$
(2.21)

La solution du système sont :

 $x_1 = 1$ $x_2 = 1$ $x_3 = 1$

 $x_4 = 2$

Rappelons que la division sur l'élément générateur expliqué en détail dans la résolution par la méthode de Gauss des systèmes linéaire implique que cet élément doit être non nul. Dans le cas contraire la méthode permet la permutation entre lignes et colonnes pour que la condition sur les éléments générateur, pour chaque étape, soit satisfaite.

Détermination des Paramètres de la formule de masse de Bethe-Weizsäcker

Chapitre

Détermination des Paramètres de la formule de masse de Bethe-Weizsäcker

D'après les deux méthodes précédentes, on introduit la détermination des cinq paramètres de la formule de masse de Bethe-Weizsäcker se fait en ajustant les données expérimentales à l'expression.

Le terme général pour chaque erreur dans la méthode de moindre carrée de type linéaire est une fonctionne comme l'équation (2.2) en substituant l'expression de l'énergie de liaison. Il s'agit ici de minimiser :

$$\chi^{2}(a_{v}; a_{s}; a_{c}; a_{a}; a_{p}) = \sum_{i=1}^{n} \left[E_{i} - \frac{A_{i}}{Z_{i}} B\left(a_{v}, a_{s}, a_{c}, a_{a}, a_{p}\right) \right]^{2}$$
(3.1)

où E_i représente les valeurs expérimentales de l'énergie de liaison des noyaux et B_i est l'énergie de liaison donnée par la formule semi-empirique en fonction des différents paramètres. Concernant les fonctions numériques à cinq variables, une condition nécessaire (non suffisante) d'extremum en un point $(a_v, a_s, a_c, a_a, a_p)$ est que toutes les dérivées partielles de χ^2 , à savoir

$$\frac{\partial \chi^2}{\partial a_v} = 0, \frac{\partial \chi^2}{\partial a_s} = 0, \frac{\partial \chi^2}{\partial a_c} = 0, \frac{\partial \chi^2}{\partial a_a} = 0 \text{ et } \frac{\partial \chi^2}{\partial a_p} = 0$$
(3.2)

soient nulles en ce point.

Avec comme condition pour avoir un minimum sur la dérivée seconde qui doit être positive :

$$\frac{\partial^2 \chi^2}{\partial a^2} > 0 \tag{3.3}$$

CHAPITRE 3. DÉTERMINATION DES PARAMÈTRES DE LA FORMULE DE MASSE <u>DE BETHE-WEIZSÄCKER</u> 34

Le calcul conduit au système :

$$\begin{split} & \sum_{i=1}^{n} \left[E_{i} - \left(a_{v}A_{i} - a_{s}A_{i}^{2/3} - a_{c}\frac{Z_{i}^{2}}{A_{i}^{1/3}} - a_{a}\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} + \delta_{i}a_{p}A_{i}^{-1/2} \right) \right] \left[-A_{i} \right] = 0 \\ & \sum_{i=1}^{n} \left[E_{i} - \left(a_{v}A_{i} - a_{s}A_{i}^{2/3} - a_{c}\frac{Z_{i}^{2}}{A_{i}^{1/3}} - a_{a}\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} + \delta_{i}a_{p}A_{i}^{-1/2} \right) \right] \left[A_{i}^{2/3} \right] = 0 \\ & \sum_{i=1}^{n} \left[E_{i} - \left(a_{v}A_{i} - a_{s}A_{i}^{2/3} - a_{c}\frac{Z_{i}^{2}}{A_{i}^{1/3}} - a_{a}\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} + \delta_{i}a_{p}A_{i}^{-1/2} \right) \right] \left[\frac{Z_{i}^{2}}{A_{i}^{1/3}} \right] = 0 \end{split}$$
(3.4)
$$& \sum_{i=1}^{n} \left[E_{i} - \left(a_{v}A_{i} - a_{s}A_{i}^{2/3} - a_{c}\frac{Z_{i}^{2}}{A_{i}^{1/3}} - a_{a}\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} + \delta_{i}a_{p}A_{i}^{-1/2} \right) \right] \left[\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} \right] = 0 \\ & \sum_{i=1}^{n} \left[E_{i} - \left(a_{v}A_{i} - a_{s}A_{i}^{2/3} - a_{c}\frac{Z_{i}^{2}}{A_{i}^{1/3}} - a_{a}\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} + \delta_{i}a_{p}A_{i}^{-1/2} \right) \right] \left[\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} \right] = 0 \\ & \sum_{i=1}^{n} \left[E_{i} - \left(a_{v}A_{i} - a_{s}A_{i}^{2/3} - a_{c}\frac{Z_{i}^{2}}{A_{i}^{1/3}} - a_{a}\frac{(A_{i} - 2Z_{i})^{2}}{A_{i}} + \delta_{i}a_{p}A_{i}^{-1/2} \right) \right] \left[+\delta_{i}A_{i}^{-1/2} \right] = 0 \end{aligned}$$

ce qui permet d'écrire le système final suivant :

BETHE-WEIZSÄCKI	ER			36
$\sum_{i=1}^n A_i E_i$	$\sum_{i=1}^n A_i^{2/3} E_i$	$\sum_{i=1}^n \frac{Z_i^2}{A_i^{1/3}} E_i$	$\sum_{i=1}^n \frac{(A_i - 2Z_i)^2}{A_i} I$	$+\sum_{i=1}^n \delta_i A_i^{-1/2} E_i$
II	II	II	II	П
a_p	a_p	a^{b}	a_p	a_p
$\sum_{i=1}^n \delta_i A_i^{1/2}$	$\sum_{i=1}^n \delta_i A_i^{1/6}$	$\sum_{i=1}^n \delta_i Z_i^2 A_i^{-5/6}$	$\sum_{i=1}^n \delta_i \frac{(A_i - 2Z_i)^2}{A_i^{3/2}}$	$\sum_{i=1}^n \delta_i A_i^{-1}$
+	+	+	+	+
a_a	a_a	a_a	a_a	a_a
$\sum_{i=1}^n \left(A_i - 2Z_i ight)^2$	$\sum_{i=1}^{n} \frac{(A_i - 2Z_i)^2}{A_i^{1/3}}$	$\sum_{i=1}^{n} Z_{i}^{2} \frac{(A_{i}-2Z_{i})^{2}}{A_{i}^{4/3}}$	$\sum_{i=1}^n \frac{(A_i - 2Z_i)^4}{A_i^2}$	$\sum_{i=1}^n \delta_i \frac{(A_i-2Z_i)^2}{A_i^{3/2}}$
Ι	I	I	Ι	Ι
a_c	a_c	a_c	a_c	a_c
$\sum_{i=1}^n Z_i^2 A_i^{2/3}$	$\sum_{i=1}^n Z_i^2 A_i^{1/3}$	$\sum_{i=1}^n \frac{Z_i^4}{A_i^{2/3}}$	$\sum_{i=1}^{n} Z_{i}^{2} \frac{(A_{i} - 2Z_{i})^{2}}{A_{i}^{4/3}}$	$\sum_{i=1}^n \delta_i \frac{Z_i^2}{A_i^{5/6}}$
Ι	I	T	Ι	Ι
a_s	a_s	a_s	a_s	a_s
$\sum_{i=1}^n A_i^{5/3}$	$\sum_{i=1}^n A_i^{4/3}$	$\sum_{i=1}^n Z_i^2 A_i^{1/3}$	$\sum_{i=1}^{n} \frac{(A_i - 2Z_i)^2}{A_i^{1/3}}$	$\sum_{i=1}^n \delta_i A_i^{1/6}$
Ι	I	T	Ι	Ι
a_v	a_v	a_v	a_v	a_v
$\sum_{i=1}^n A_i^2$	$\sum_{i=1}^n A_i^{5/3}$	$\sum_{i=1}^n Z_i^2 A_i^{2/3}$	$\sum_{i=1}^{n} \left(A_i - 2Z_i\right)^2$	$\sum_{i=1}^n \delta_i A_i^{1/2}$

CHAPITRE 3. DÉTERMINATION DES PARAMÈTRES DE LA FORMULE DE MASSE DE BETHE-WEIZSÄCKER 3

36

Le système (3.5) contient cinq inconnues $(a_v, a_s, a_c, a_a \text{ et } a_p)$. Pour le résoudre on utilise le code de résolution qui a été conçu spécialement pour cette fin avec bien entendu la modification de la partie nous concernant pour le faire adapter avec notre cas dans notre travail. Le code consiste à lire les valeurs expérimentales des énergies de liaison des noyaux disponibles ainsi que les nombres de neutrons de protons et de masse atomique à partir d'un fichier, puis calculer les paramètres constants du système représentés par les différentes sommes, et enfin appliquer la méthode de Gauss pour le calcul définitif des paramètres de la formule de masse.

3.1 Données utilisées dans ce travail

Le document principal de notre travail est le papier de la référence[10] où sont présentées les énergies de liaison ainsi que d'autre caractéristiques relatives aux noyaux atomiques. Pour le calcul de l'énergie de liaison donnée par l'expression (3.5) nous avons besoin des nombres de neutron N, de proton Z, de masse A et de l'énergie de liaison expérimentale, que nous avons notée E_i , pour chaque atome. Le tableau (3.1) est un extrait du ficher que nous avons utilisé. Le tableau contient également les masses et les excès de masses.

	r																-				-	-											
	540.	430.	210.	2.459	4.800	4.000	42.952	0.962	7.725	3.311	16.440	12.686	10.702	322.241	322.	537.	537.	430.	665.000	3.600	13.000	2.085	29.430	1.025	2.771	27.751	5.749	10.995	15.340	152.333	322.	430.	537.
$M_{at}(um)$	961870.	946310.	936860.	924551.258	918784.767	909868.067	907966.80	902201.873	905079.624	904059.514	910087.465	911784.270	920677.279	926045.000	938196.	946752.	965883.	951640.	939613.000	928950.343	920125.282	912963.663	907851.286	904242.792	903810.093	904942.488	907405.255	911453.014	917227.238	924052.289	933236.	943435.	955532.
	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	643.	446.	196.	5.024	5.820	40.183	40.000	7.140	7.811	15.000	19.343	15.461	300.000	424.	583.		641.	738.	619.453	12.565	12.264	27.483	27.408	2.690	25.767	26.047	11.558	13.979	141.176	332.	500.	641.	
E(kev)	14494.	8803.	11466.	5371.451	8305.853	1771.015	5370.000	-2680.608	950.226	-5615.000	-1580.563	-8283.785	-5000.000	-11319.	-7970.	*	13267.	11203.	9932.201	8220.492	6671.005	4762.148	3361.291	403.057	-1054.819	-2294.053	-3770.463	-5378.654	-6357.495	-8555.	-9500.	-11268.	*
В	B^-	B^-	B^-	B-	B^-	B^-	B-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B^-	B-						
	4.	3.	2.	0.019	0.037	0.031	0.333	0.007	0.060	0.026	0.128	0.098	0.083	2.501	2.	4.	4.	3.	5.119	0.028	0.100	0.016	0.227	0.008	0.021	0.214	0.044	0.085	0.118	1.173	2.	3.	4.
EL/A(kev)	8087.	8201.	8268.	8357.085	8.327	8458.023	8466.262	8504.492	8475.635	8477.034	8423.722	8404.031	8328.480	8280.294	8179.	8107.	8056.	8159.	8245.239	8320.858	8382.330	8430.996	8463.887	8485.201	8482.066	8466.883	8441.458	8403.832	8352.914	8293.907	8217.	8132.	8032.
	503.	401.	196.	2.291	4.471	3.726	40.010	0.896	7.196	3.085	15.314	11.817	9.970	300.166	300.	500.	500.	401.	619.444	3.353	12.109	1.942	27.414	0.955	2.582	25.850	5.356	10.24	14.290	141.898	300.	401.	500
$\Delta(kev)$	-35518.	-50012.	-58815.	-70280.050	-75651.502	-83957.354	-85728.369	-91098.369	-88417.761	-89367.987	-83752.987	-82172.423	-73888.639	-68888.639	-57570.	-49600.	-31780.	-45047.	-56250.128	-66182.329	-74402.821	-81073.826	-85835.974	-89197.265	-89600.321	-88545.502	-86251.449	-82480.986	-77102.331	-70744.837	-62190.	-52690.	-41422.
org	x	x	x		x	x	+					x	TI		x	x	x	x	x	x	x	x	d+							I	x	x	d-
Elt	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	Cs	Ba	la	Ce	T_{c}	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	C	Ba	La	Ce	Р
A	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
Ζ	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
N	77	76	75	74	73	72	71	20	60	68	67	66	65	64	63	62	78	77	76	75	74	73	72	71	20	69	68	67	66	65	64	63	62
Z - N	34	32	30	28	26	24	22	20	18	16	14	12	10	×	9	4	35	33	31	29	27	25	23	21	19	17	15	13	11	6	7	5 C	3
	0																0																

CHAPITRE 3. DÉTERMINATION DES PARAMÈTRES DE LA FORMULE DE MASSE DE BETHE-WEIZSÄCKER______3

39

TABLE 3.1 – Table des données nucléaire de la référence [10]

3.2 Résultats

Les résultats que nous avons obtenus pour le terme d'appariement $\delta=\pm a_p A^{-1/2} \text{ sont les suivants :}$

$$a_v = 15,56$$
 MeV
 $a_s = 16,87$ MeV
 $a_c = 0,71$ MeV
 $a_a = 23,02$ MeV
 $a_p = 10,02$ MeV

et par conséquent la formule de masse peut être s'écrit définitivement comme :

$$B(A,Z) = 15.56A - 16.87A^{2/3} - 0.71Z^2A^{-1/3} - 23.02(N-Z)^2/A \pm 10.02A^{-1/2}$$
(3.7)

3.3 Discussion et Comparaison des résultats

Le tableau suivant donne les valeurs déterminées des paramètres de la formule de masse de Bethe et Weizsäcker pour les deux formes du terme d'appariement :

Paramètres (MeV)	a_v	a_s	a_c	a_a	a_p
notre résultat pour $\delta = \pm a_p A^{-1/2}$	15, 56	16,87	0,71	23,02	10,02
résultat pour $\delta = \pm a_p A^{-3/4}[11]$	15,27	16,91	0,71	23,04	19, 37

Remarquons la grande différence quant au terme d'appariement, ce qui est tout à fait légitime car ce sont deux terme de formes complètement différentes.

3.4 Energie de liaison calculée

La **Fig.3.1** représente l'énergie de liaison par nucléon calculée en utilisant les valeurs des paramètres que nous avons obtenues en fonction de A.

FIGURE 3.1 – Énergie de liaison par nucléon en fonction de A

Dans cette courbe, nous remarquons que l'énergie moyenne de liaison par nucléon augmente d'abord très rapidement avec A pour les noyaux des nombres de masse 0 < A < 50jusqu'à $B_{moy} = 8MeV$ puis atteint une valeur constante autour de $B_{moy} = 8.5MeV$, au voisinage de A = 50 puis diminue lentement et de façon monotone jusqu'à la valeur $B_{moy} = 7MeV$. Plus généralement nous pouvons tracer les noyaux de la charte en fonction de leur énergie de liaison par nucléon comme c'est représenté **fig.3.2**.

FIGURE 3.2 – Comparaison des énergies de liaison par nucléon expérimentales[10] (les pellets) et des valeurs calculée à partir de la formule de Bethe-Weizsäcker (les sphères) dans touts les noyaux.

FIGURE 3.3 – Différant contribution de l'énergie de liaison par nucléon

3.5 Erreur relative

Soit x un nombre réel, et x_i , une approximation de ce nombre . L'erreur relative est définie par :

$$\frac{\delta x}{x} = \frac{|x - x_{\rm i}|}{x} \tag{3.8}$$

De plus, en multipliant par 100, on obtient l'erreur relative en pourcentage

$$\frac{\delta x}{x} = \frac{|x - x_i|}{x} \times 100\% \tag{3.9}$$

Le tableau suivant donne la comparaison de nos valeurs avec autre référance.

paramétresr	a_v	a_s	a_c	a_a	a_p
nos valeurs	15.56	16.87	0.71	23.02	10.02
référance[9]	15.78	18.34	0.71	23.21	12
Δa	0.22	1.47	0	0.19	1.8
$(\Delta a/a) \times 100$	1.44	8.71	0	0.82	17.96

La première remarque que nous voulons faire à propos des nouvelles valeurs des paramètres de la formule de Bethe-Weizsäcker et leur comparaison avec celle de la référence[9].

Notons que nos valeurs des cinq paramètres sont plus proches des valeurs de la référence[9], tel que le pourcentage d'erreur relative calculées est très faible. pour calculer l'erreur relative de l'énergie de liaison il faut utilisée la formule suivante :

$$\frac{\delta E}{E} = \frac{|E_{\rm exp} - B_{\rm cal}|}{E_{\rm exp}} \times 100\%$$
(3.10)

où E_{exp} et B_{cal} sont les énergies de liaison expérimentale et calculée respectivement. Le tableau(3.2) contient Quelque valeur des énergies de liaison calculées et expérimentales avec l'erreur relative.

Le **fig.3.4**, représente la variation de l'erreur relative de l'énergie de liaison en fonction de A

FIGURE 3.4 – Erreur relative de l'énergie de liaison par nucléon en fonction de A.

•Pour $A \leq 50$ l'erreur relative est trop grand , au voisinage de 2.2%

- •Pour $50 \le A \le 100$ l'erreur relative est autours de 1.6%
- •Pour 50 $\leq A \leq 120$ l'erreur relative est diminue jusqu'à 0.25%
- $\bullet \mathrm{Pour120} \leq A \leq 130$ l'erreur relative est augment à 1.26%
- •Pour $130 \le A \le 210$ elle est autours de 0.75%.
- •Pour $A \ge 130$ elle est diminus de façon monotone jusqu'à 0.05%.

La fig.3.5 , représente la variation de l'erreur relative de l'énergie de liaison en fonction de A pour $\delta = \pm a_p A^{-3/4}$

FIGURE 3.5 – Erreur relative de l'énergie de liaison par nucléon en fonction de A.[11]

FIGURE 3.6 – Comparaison des erreurs relatives que nous avons calculés et de référence [11]

La courbe en noir représente la variation de l'erreur relative que nous avons calculé. la courbe en rouge représente la variation de l'erreurs relative de la référence [11] Notons que les deux courbes de **fig 3.6** sont presque identiques.

Finalement on peut conclure que la formule de Bethe-Weizsäcker peut être appliquée avec les paramètres que nous avons calculés avec une précision inférieure à 2.2% que la masse du noyau dépasse A = 50 et les masses de référence [10] sont parfaitement reproduites.

N	Z	A	énergie de liaison expérimentale[10]	énergie de liaison calculée	$\delta E/E$
33	17	50	7,50959	7,651	1,84832
32	18	50	7,89882	8,056	1,95112
31	19	50	8,2917	8,28858	0,03763
30	20	50	8,48985	8,55016	0,70545
29	21	50	8,71998	8,63368	0,99962
28	22	50	8,75538	8,75572	0,00383
27	23	50	8,82277	8,69592	1,45879
26	24	50	8,69543	8,70103	0,06442
25	25	50	8,60007	8,5327	0,78962
24	26	50	8,30998	8,35403	0,52725
23	27	50	8,05188	8,001	0,6359
22	28	50	7,59904	7,716	1,5158
34	17	51	7,39572	7,53	1,78326
33	18	51	7,80325	7,926	1,54873
32	19	51	8,15997	8,22135	0,74654
39	21	60	7,84599	7,865	0,2417
38	22	60	8,12928	8,157	0,33984
37	23	60	8,42004	8,32545	1,13621
46	24	70	7,77522	7,867	1,16668
45	25	70	8,06636	8,07	0,0451
44	26	70	8,26367	8,302	0,46168
52	28	80	7,95821	8,08	1,5073
51	29	80	8,18572	8,24	0,65869
50	30	80	8,33833	8,42354	1,01161
58	32	90	8,07177	8,118	0,56948
57	33	90	8,25328	8,244	0,11257
56	34	90	8,37333	8,39577	0,26727
64	36	100	8,13828	8,14	0,0212
63	37	100	8,28525	8,24432	0,49641
62	38	100	8,38068	8,37223	0,10091
68	42	110	8,36807	8,35935	0,10426
66	44	110	8,50164	8,48631	0,18067
72	48	120	8,4476	8,45802	0,12324
71	49	120	8,49356	8,46626	0,32245
783	47	130	8,08293	8,14	0,70106
74	56	130	8,40075	8,40555	0,0571

TABLE 3.2 – Quelque valeurs des énergies de liaison calculées et expérimentales avec l'erreur relative

Conclusion

Conclusion

Ce travail de mémoire s'attache à l'étude de la formule de masse de Bethe-Weizsäcker et tout en se concentrant sur le dernier terme d'appariement. L'objectif de ce travail est l'actualisation des paramètres de cette formule sur la base des masses et des énergies de liaison nucléaires parues dans la dernière publication sur les masses atomiques qui est celle d'AME2016. La méthode de travail s'est basée sur, principalement, deux méthodes mathématiques, à savoir la méthode des moindres carrés et la méthode de Gauss. La première méthode a permis, d'une part d'ajuster les données expérimentales des énergies de liaison en adoptant la formule de masse de Bethe-Weizsäcker et d'autre part d'aboutir un système d'équations linéaires en les paramètres de cette formule. La seconde méthode , quant à elle a permis de résoudre le dernier système. Les résultats que nous avons obtenus pour les paramètres de la formule de masse nous ont permis de reproduire pratiquement presque toutes les valeurs des énergies de liaison expérimentales hormis celle relatives au noyaux de masse inférieure à 50. L'erreur relative pour ces noyaux oscille entre 0.05% et 1.5%.

Enfin, nous avons comparé nos résultats avec les résultats obtenue dans [11] et avons conclu que les deux résultats sont en très bon accord.

Bibliographie

- S. Khaled, Calculs des énergies de liaison et d'excitation des noyaux de la région déformée A 32, Thèse de Doctorat, Univ Mentouri Constantine (2009)
- [2] D. Robley Evans, The Atomic Nucleus, 1955
- [3] V. Mirzaei, Estimation of Semi-Empirical Mass Formula Coefficients, (2017)
- [4] D. Sénéchal, Physique Subatomique Université de Sherbrooke, (2018)
- [5] D. N. BASU, Neutron and proton drip Lines using the modified Bethe–Weizsacker mass formula, (2003)
- [6] S. Ouichaoui, Introduction à la Physique Nucléaire, Tome 1 Construction de la Matiére et Noyaux, Edition office des Puplications Universitaires, (1992)
- [7] N. Piskounov, Calcul Différentiel et Intégral, édition mir, Moscou(1980)
- [8] B. Demidovitch, Eléments de calcul Numérique, Edition Mir Moscou (1973)
- [9] D. N. BASU, Modfied Bethe Weizsäcker mass Formula with Isotonic Shift and New Driplines, (2005)
- [10] W. J. Huang et al, The AME2016 atomic mass evaluation. I. Evaluation of input data; and adjustment procedures, Chinese Physics C Vol. 41, No.3(2017) 030002.
- [11] A. Amrane et H. Chikh, Actualisation des Paramètres de la Formule Semi-Empirique de Masse de Bethe-Weizsäcker, Mémoire master, Univ Djilali Bounâma Khemis Miliana, (2018).