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Abstract 

Frequent subgraph mining (FSM) is an important task for exploratory data 

analysis on graph data. Over the years, many algorithms have been proposed to 

solve this task. These algorithms assume that the data structure of the mining 

task is small enough to fit in the main memory of a computer. However, as the 

real-world graph data grows, both in size and quantity, such an assumption does 

not hold any longer. To overcome this, some graph database-centric methods have 

been proposed in recent years for solving FSM; however, a distributed solution 

using MapReduce paradigm has not been explored extensively. Since, MapReduce 

is becoming the de-facto paradigm for computation on massive data, an efficient 

FSM algorithm on this paradigm is of huge demand. In this work we study 

frequent subgraph mining algorithm called FSM-H which uses an iterative 

MapReduce based framework. FSM-H is complete as it returns all the frequent 

subgraphs for a given user-defined support, and it is efficient as it applies all the 

optimizations that the latest FSM algorithms adopt, our experiments of with real 

life and large synthetic datasets validate the effectiveness of FSM-H for mining 

frequent subgraphs from large graph datasets. 
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Résumé:  

La fouille des sous graphes fréquent est une tâche importante lorsqu’il s’agit 

de l’analyse exploratoire des données de graphe. Au cours des années, de 

nombreux algorithmes ont été proposés pour résoudre cette tâche. Ces algorithmes 

supposent que la structure de données sujet de l’exploration est petite et peut tenir 

dans la mémoire principale d'un ordinateur, cependant, à mesure que les données 

du graphe qu’on trouvent dans la vie réelle augmentent, en taille et en 

quantité,une telle hypothèse ne tient plus, Pour surmonter ce probléme, ces 

dernières années certaines méthodes centrées sur les bases de données du graphe 

ont été proposées pour résoudre la fouille des sous-graphe fréquent (FSF), 

Cependant, une solution distribuée utilisant le paradigme MapReduce n'a pas été 

largement explorée. Ces derniéres années le modèle de programmation 

MapReduce est devenu la norme lorsque il s’agit de l’exploration des données 

massives,donc une solution basé sur ce paradigme est très aprécié.Dans ce travail 

nous étudions une méthode pour la fouille des sous graphe fréquent qui adopte 

une approche itérative basé sur le modèle Map Reduce qui s’appelle FSM-H.cet 

algorithme est complet puisque il retourne tous les sous graphes fréquents qui ont 

un minimum support donnée par l »utilisateur, de plus cet algorithme est efficace 

car il applique toutes les optimisations qui sont adoptés par les algorithmes de 

fouille de graphes. Nos expériences et tests sur des données de graphe de la vie 

réelle et des données synthétiques valident l’efficacité de FSM-H pour la fouille 

des sous graphes fréquents dans un ensemble de données massives. 
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Introduction: 

We live in the era where almost everything surrounding us is generating some 

kind of data, a search on a search engine is being logged, a heartbeat of a patient 

in the hospital generates data, the flipping of channels when watching TV is being 

captured by cable companies, Data this valuable asset is created constantly, and 

at an ever-increasing rate, and so must be stored somewhere for some purpose. 

Organizations and institutions have been storing huge volumes of data that is 

of various types and in different forms for several years now. the data remained 

on backup tapes or drives, and so it could only be used in case of emergency to 

retrieve important data, This is changing, Organizations want now to use this data 

to get insight to help understand existing problems, seize new opportunities, and 

be more profitable, the study and analysis of these volumes of data that have the 

unique feature of being “massive, high dimensional, heterogeneous, complex, 

unstructured, incomplete, noisy, and erroneous” has given birth to a term called 

big data. 

It is important to mention that the move to big data is not exclusively driven 

just by businesses, Science, Research and Government activities have also helped 

to derive it forward, just think about analyzing the human genome, or dealing with 

all the astronomical data collected at observatories to advance our understanding 

of the world around us, that being said big data find its application in several 

different domains ranging from web, computational biology, astronomy,  

chemoinformatics, medicine, e-commerce just to name a few, in these domains, 

analyzing and mining of massive data for extracting novel insights has become a 

routine task, thus giving rise obviously to various basic and advanced data 

analytics methods appropriate to the problem in question like data mining , social 

network analysis for social websites, discourse-level analysis for text , …. etc. 

Data mining for instance is an analytics method which have a basic objective 

of discovering hidden and useful data pattern from very large datasets. Graph 

mining is a data mining technique that gained much attention in the last few 
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decades as novel approach when it comes to exploratory data analysis for mining datasets 

represented by a graph datastructure. 

 Graphs are common data structures used to represent and model real-world 

systems, e.g. social networks, chemical molecules, map of roads in a country. 

Frequent sub graph mining which is the subject of this report is considered as a 

sub section of graph mining domain which is extensively used to identify 

subgraphs in large graph datasets whose occurrences counts are above a specified 

minimum support threshold, also used for graph classification, building indices 

and graph clustering purposes. The frequent sub graph mining is addressed from 

various perspectives and viewed in different directions based upon the domain 

expectations. 

Mining patterns from graph databases is challenging since graph related 

operations, such as subgraph testing, generally have higher time complexity than 

the corresponding operations on item sets, sequences, and trees, moreover the 

tremendously increasing size of existing graph databases makes the mining even 

much harder. hence processing or analyzing such data to get insight efficiently 

was very difficult in the past, because traditional methods for analysis and mining 

are not designed to handle massive data and complex operation on it, and so do 

not withstand the requirements, therefore in recent years, many such methods are 

re-designed and re-implemented under a computing framework that is better 

equipped to handle big data idiosyncrasies. 

Among the recent effort for building a suitable computing platform for 

analyzing massive data, the Map Reduce framework of distributed computing has 

been the most successful. Because it adopts a data centric approach of distributed 

computing with the ideology of “moving computation to data”, besides it uses a 

distributed file system that is particularly optimized to improve the IO 

performance, while handling massive data, another main reason for this 

framework to gain attention of many admirers is the high level of abstraction that 

it provides, which keeps many system level details hidden from the programmers 

and allow them to concentrate more on the problem specific computational logic. 
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In this report we propose an implementation and a detailed evaluation of a 

novel iterative map reduce based frequent subgraph mining algorithm “FSM-H”, 

in the Hadoop platform. 

The report is organized in five chapters as follows: 

In chapter 01, we define big data, and review its evolution in the past 20 years. 

we present the underlying technology architecture that support it, as well as 

various data analytics methods. 

Chapter 02 is divided in two parts: 

Part 01 : discusses the Graphs data structure, means of representing them on 

machines, Graph theory terminology. 

Part 02 : gives the state of the art of frequent subgraph mining approaches, a 

survey on different FSM algorithms and their classification with respect to 

different considerations, as well as solutions addressing the major issues that one 

may encounter when enumerating subgraphs in large datasets. 

Chapter 03 covers the internals of the Apache Hadoop ecosystem, the platform 

in which the algorithm is implemented, review its features and capabilities, runs 

into the technical details of the Hadoop distributed file system HDFS and the 

MapReduce programming model. 

Chapter 04 present a thorough explanation of the FSM-H algorithm studied, 

giving the implementation details, describing for instance the map and the reduce 

functions, covering the techniques used for the purpose of carrying out 

isomorphism checking, candidate subgraph generation and support counting.  

In Chapter 05 we present the experiments and analyses the results, and so 

empirically demonstrate the performance of FSM-H on real world chemical 

compounds datasets.  
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I. Chapter 01  

Big Data Principles and techniques 

Context: 

The term big data is now well understood for its well-defined characteristics. 

more the usage of big data is now looking promising. this chapter being an 

introduction draws a comprehensive picture on the history and progress of big 

data, it defines the big data characteristics, and then presents the big data 

technology stack, a discussion on the state of the art of big data analytics 

techniques including data mining is also presented. 

 

I.1 Brief History:  

Although the term big data itself is relatively new, when it was first coined by 

a Silicon Graphics Inch SGI chief scientist called John Mashey in 1990, the 

origins of large data sets go back to the 1960s and '70s when the world of data was 

just getting started, with the first data centers and the development of the 

relational database. 

Around 2005, people began to realize just how much data users generated 

through Facebook, YouTube, and other online services. Hadoop an open-source 

framework created specifically to store and analyze big data sets was developed 

that same year. NoSQL databases also began to gain popularity during that time. 

In the years since then, the volume of big data has skyrocketed. Users are still 

generating huge amounts of data but it’s not just humans who are doing it. 

With the advent of the IoT more objects and devices are connected to the 

internet, gathering data on customer usage patterns and product performance. 

While big data has come far, its usefulness is only just beginning. Cloud 

computing has expanded big data possibilities even further. The cloud offers truly 

elastic scalability, where developers can simply spin up ad hoc clusters to test a 

https://en.wikipedia.org/wiki/Silicon_Graphics
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subset of data.(1)  

Figure I-1 Highlights the most important technical events in the history of big 

data: 

 

Figure I-1 : A short history of big data.  

I.2 Definition:  

Big data is an abstract concept. Apart from masses of data, it also has some 

other features, which determine the difference between itself and “massive data” 

At present, although the importance of big data has been generally recognized, 

when you read articles about big data, it becomes clear that there are varying 

definitions of it, this looseness leads to considerable confusion. In general, big data 

refers to the datasets that could not be perceived, acquired, managed, and 

processed by traditional IT and software/hardware tools within a tolerable time.(2) 

Because of different concerns, scientific and technological enterprises, research 
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scholars, data analysts, and technical practitioners have different definitions of 

big data. In 2010, Apache Hadoop defined big data as “datasets which could not be 

captured, managed, and processed by general computers within an acceptable 

scope.”(3), On the basis of this definition, in May 2011, McKinsey & Company, a 

global consulting agency announced Big Data as “the Next Frontier for Innovation, 

Competition, and Productivity.”(1)  

As a matter of fact, the wider and most used definition of big data, has been 

proposed as early as 2001 when Doug Laney, an analyst of META (presently 

Gartner) defined challenges and opportunities brought by the increased data in 

terms of a 3 Vs attributes. 

I.3 Big Data 3V’s : 

Volume – This is big data’s most identifiable aspect. It refers to the mind-

boggling amount of data generated each second by users, sensors, and server. just 

think of all the emails, Twitter messages, photos, video clips that we produce and 

share every second. We are not talking terabytes, but zettabytes or brontobytes of 

data. On Facebook alone we send 10 billion messages per day, click the like button 

4.5 billion times and upload 350 million new pictures each and every day. If we 

take all the data generated in the world between the beginning of time and the 

year 2000, it is the same amount we now generate every minute.  

Velocity – refers to the speed at which new data is generated and the speed 

at which data moves around. This covers everything from emails to real-time 

monitoring, to online financial transactions. Consider that more than 100 million 

emails are composed every minute, and Just think of social media messages going 

viral in minutes. Velocity therefore suggest two kind of analytics batch and real 

time.  

Variety – refers to the different types of data we can now use. In the past we 

focused on structured data that neatly fits into tables or relational databases such 

as financial data (for example, sales by product or region). But now Nearly all the 

data generated is in an unstructured format, in fact, 80 percent of the world’s data 

is now unstructured and therefore can’t easily be put into tables or relational 

http://www.statetechmagazine.com/article/2013/06/breaking-down-big-data-volume-velocity-and-variety
http://www.statetechmagazine.com/article/2013/06/breaking-down-big-data-volume-velocity-and-variety
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databases, just think of sensor data or social media posts to get an idea of the 

variety of content.(4)  

The below figure highlights several sources that drives the big data deluge: 

 

Figure I-2 : What’s driving the data deluge.(5)  

Over the years, large enterprises like IBM have expanded the definition to 

include five V’s, incorporating: 

Veracity – Big Data Veracity refers to the biases, noise and abnormality in 

data, this is a highly significant factor that only really became apparent as data 

analysts began to work with big data. The trustworthiness of the data source and 

the time necessary to clean up the data before it could be used deeply impact how 

useful the data is to an enterprise. The length of time between when the data is 

collected and the time it is analyzed contributed to a new plague of “data rot.”(2) 

Value – As the above suggests, the complexity of converting raw data into 

useful insights and actionable conclusions influences whether it should be 

considered big data or merely a big headache, the purpose of the value 

characteristic is to answer the following question:  

“Does the data contain any valuable information for my needs”. 

http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
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Really, there’s no reason to stop at five. The number of Vs that could be added 

continue to increase as more people begin exploring the possibilities. Data experts 

have suggested adding vulnerability to stress the growing security concerns over 

the use of big data and viability to highlight the fact that not all data, even if 

accurate, will have a meaningful impact on desired outcomes. 

Figure I-3 shows the progress of big data from 2V’s attributes up to 6V’s. 

 

Figure I-3 : From 3Vs, 4Vs, 5Vs, and 6Vs big data definition. 

I.4 32 Vs Definition and Big Data VENN DIAGRAM:  

Laney’s 3Vs have captured the importance of Big Data characteristics 

reflecting the pace and exploration phenomena of data growth during the last few 

years. these 3V’s however represented just a syntactic or logical meaning of Big 

Data, therefore for a more precise and semantic meaning the relationship of data, 

business intelligence, and statistics have to be included incorporating all 

attributes of these three domains, which in fact represent a hierarchical model for 

http://www.forbes.com/sites/bernardmarr/2016/12/20/big-data-the-6th-v-everyone-should-know-about/#17944c3f221b
https://www.wired.com/insights/2013/05/the-missing-vs-in-big-data-viability-and-value/
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a variety of complex problems and applications.(6)  

The Figure below presents a venn diagram showing all logical relations of 

Data, BI, Statistics in terms of their 32V’s (9V’s) attributes considered for big data 

as follows: 

 Data Attributes: Volume, Variety, Velocity.   

 BI Attributes: Visibility, Verdict, Value.  

 Statistics Attributes: Veracity, Validity, Variability. 

This is actually considered as the most accurate definition of big data. 

.  

Figure I-4 : 32 Vs Venn diagrams hierarchical model.  

I.5 Data Types:  

Big data can come in multiple forms, including structured and non-structured 

data such as financial data, text files, multimedia files, and genetic mappings, 
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Figure I-5 shows four types of data structures, with 80–90% of future data growth 

coming from non-structured data types. 

 

 

Figure I-5 : Big data growth is increasingly unstructured.  

I.5.1 Structured Data:  

The term structured data generally refers to data containing a defined data 

type, format, and structure, examples of structured data include numbers, dates, 

and strings (for example, a customer’s name, address), transaction data, online 

analytical processing (OLAP) data cubes, CSV files, and even simple spreadsheets, 

this kind of data accounts for about 20 percent of the data that is out there, most 

of structured data resides in relational databases (RDBMS). And it is eminently 

searchable using a language like structured query language (SQL). 

 

Figure I-6 : Example of structured data. 
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The sources of structured data are divided into two categories: 

 

 Computer or machine-generated: Machine-generated data generally 

refers to data that is created by a machine without human intervention. 

 Human-generated: This is data that humans, in interaction with 

computers, supply. 

Machine-generated structured data could include the following:  

 Sensor data: Examples include radio frequency ID (RFID) tags, smart 

meters, medical devices, and Global Positioning System (GPS) data. 

 Web log data: When servers, applications, networks, and so on operate, 

they capture all kinds of data about their activity. 

 Point-of-sale data: When the cashier swipes the bar code of any 

product that you are purchasing, all that data associated with the 

product is generated. 

Examples of structured human-generated data might include the following: 

 Input data: This is any piece of data that a human might input into a 

computer, such as name, age, income, non-free-form survey responses, 

and so on. 

 Gaming-related data: Every move you make in a game can be 

recorded.(7) 

I.5.2 Unstructured Data:  

Data that has no inherent structure, which may include text documents, 

PDFs, images, and video. Unstructured data is really most of the data that we may 

encounter as it represents 80% of the whole data out there, it may be human or 

machine-generated. It may also be stored within a non-relational database. Until 

recently, however, the technology didn’t really support doing much with it except 

storing it or analyzing it manually.  

The term unstructured data is misleading because each document may contain 

its own specific internal structure or formatting based on the software that created 

it. However, what is internal to the document is truly unstructured. 
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Examples of machine-generated unstructured data include:  

 Satellite images: This includes weather data or the data that the 

government captures in its satellite surveillance imagery, i.e. Google 

Earth. 

 Scientific data: This includes seismic imagery, atmospheric data, and 

high energy physics. 

 Photographs and video: This includes security, surveillance, and traffic 

video. 

 Radar or sonar data: This includes vehicular, meteorological, and 

oceanographic seismic profiles. 

The following list shows a few examples of human-generated unstructured 

data: 

 Social media data: This data is generated from the social media platforms 

such as YouTube, Facebook, Twitter, LinkedIn, and Flickr. 

 Mobile data: This includes data such as text messages and location 

information.(7) 

 

Figure I-7 : Example of unstructured data : Video about Antarctica expedition. 

I.5.3 Structured vs. Unstructured Data: What’s the Difference? 

The biggest difference is the ease of analyzing structured data vs. 

unstructured data. Mature analytics tools exist for structured data, but analytics 

tools for mining unstructured data are nascent and developing. 
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The following table depicts some of their differences:  

Table I-1 : Structured vs. unstructured data. 

 Structured Data Unstructured Data 

Characteristics  Pre-defined data 

models 

 Usually text only 

 Easy to search 

 No pre-defined data 

model 

 May be text, images, 

sound, video or other 

formats 

 Difficult to search 

Resides in   Relational databases 

 Data Warehouses 

 Applications 

 NoSQL databases 

 Data Warehouses 

 Data lakes 

Generated by Humans or machines Human or machines 

Typical 

applications 

 Airplane reservations 

systems 

 Inventory control 

 CRM systems 

 ERP systems 

 Word Processing  

 Presentation software 

 Email clients 

 Tools for viewing or 

editing media 

 

I.5.4 Semi-Structured Data:  

Semi-structured data is a kind of data that falls between structured and 

unstructured data. Semi-structured data does not necessarily conform to a fixed 

schema (that is, structure) but may be self-describing and may have simple 

label/value pairs. It maintains internal tags and markings that identify separate 

data elements, which enables information grouping and hierarchies. Both 

documents and databases can be semi-structured. This type of data only 

represents about 5-10% of the structured/semi-structured/unstructured data pie, 

but has critical business usage cases. 
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Email is a very common example of a semi-structured data type. Although 

more advanced analysis tools are necessary for thread tracking, near-dedupe, and 

concept searching; email’s native metadata enables classification and keyword 

searching without any additional tools. 

Examples of Semi-Structured Data:  

 Extensible markup language XML: This is a semi-structured document 

language, it is a set of document encoding rules that defines a human- and 

machine-readable format, XML data files are self-describing, and has a discernible 

pattern that enables parsing. 

 Open standard JavaScript Object Notation JSON: this is another 

semi-structured data interchange format. 

 

Figure I-8 : Excerpt from semi-structured data JSON File. 

I.5.5 Quasi-Structured Data:  

Textual data with erratic data formats that can be formatted with effort, tools, 

and time for instance, web clickstream data that may contain inconsistencies in 

data values and formats.(5) 
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Figure I-9 : Example of Click Stream Data , EMC  data science website search 

results. 

I.6 Data at Rest and Data in Motion: 

Apart from being classified as structured and unstructured, big data is also 

categorized as data at rest and data in motion, each of these categorizes has 

different infrastructure requirements. 

I.6.1 Data at Rest:  

Data at rest refers to the data that is captured at asynchronous intervals, this 

data can be stored in hard disk and flash storage, and can be retrieved and 

analyzed after the data creating events occurs, let us understand this better with 

an example of a retail store: 

A retailer uses the analysis of the previous month sales data (data at rest), to 

decide marketing strategy and business activities for the present month, using 

this data the retailer can decide on the kind of the marketing strategies that will 

entice its customers and increases sales, while the data provide value, the business 
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impact is limited and dependent on the customer coming back to the store to take 

advantages of the marketing strategies and activities.(8) 

Data at rest is usually managed by batch processing or online transaction 

processing methods OTLP (which will be covering later in the chapter), and 

therefore does not need an on demand infrastructure, however the infrastructure 

must be scalable to support large data sets for both transaction, that is RDBMS 

and the analysis which means: 

 Data warehousing  

 Business Intelligence 

The two latter concepts will be covered in details later when presenting the 

big data technology stack. 

I.6.2 Data in motion:  

Data in motion (real-time data) is the term used for data as it is in transit over 

the network, often there is a need to manage and process large volume of data that 

is continuously flowing, such data captured at frequent intervals typically from 

electronic sensors and devices is called data in motion. 

The volume and velocity of such data type will be very high and we need 

various tools to process such continuous streams of data.  

Picture the scenario of a hospital ICU for example: 

In a hospital ICU Electronic devices continuously monitors various medical 

parameters of a patient, however there are multiple patients with various medical 

conditions  in the ICU, considering the criticality of the patient conditions, doctors 

need to be alerted if there is a branch in the threshold value of any parameter at 

any given point in time, in this scenario there are vast amounts of data in a form 

of parameter values flowing continuously into a computer system, such data is a 

real-time data, so for alerts to be raised such data need to be processed and 

analyzed to check for any breach within small time windows within the computer 

memory and when it is flowing, this is done by various big data stream processing 

technologies.(8) 



CHAPTER 01                                                                 BIG DATA PRINCIPLES AND TECHNIQUES 

 

18 

 

I.6.3 Data at Rest vs. Data in Motion: 

How is data in motion different from data at rest? 

The key difference between the two data sets is at the point of analytics unlike 

data at rest data in motion analytics occurs in real time as the event happens and 

organizations stand to gain tremendous opportunity to improve business results 

in real time from insights gained from streaming data.  

The figure below highlights some workload requirements for both data at rest 

and data in motion. 

 

Figure I-10 : Workload requirements (Data at rest vs Data in motion). 

I.7 Functional and infrastructure requirements:  

Before we examine the big data technology stack and its component let first 

discuss the different architectural considerations associated with big data. This 

architectural foundation must take into account the functional requirements as 

well as the infrastructure requirements, these will form the design principles that 

are critical for creating a strong environment that is conducive for big data, so 

what are those functional requirements. 

 The architecture design must support the following: 

 First data is captured, and then organized and integrated, after this phase is 

successfully implemented, data can be analyzed then based on the problem being 

addressed, finally we act on the results of the analysis, although this sounds 

straightforward, certain nuances of these functions are complicated. Validation 
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when capturing data is particularly an important issue, for instance when 

combining data sources, it is critical that we have the ability to validate that these 

sources make sense when combined. Also, certain data sources may contain 

sensitive information, therefore the implementation of sufficient levels of security 

and governance is of high importance.(7) 

 

Figure I-11 : The cycle of Big data Management. 

In addition to the functional requirements it is important that the architecture 

supports: 

 High power and high speed computation. 

 High data storage. 

 Right redundancy, etc. 

I.8 Data characteristics: 

As we discuss earlier, big data consists of structured, semi-structured, and 

unstructured data. And we often have a lot of it, and it can be quite complex. When 

you think about analyzing it, you need to be aware of the potential characteristics 

of it: 

 It can come from untrusted sources: Big data analysis (which will be 

covering a bit later in the chapter) often involves aggregating data from various 

sources, these may include both internal and external data sources. How 

trustworthy are these external sources?  

The information may be coming from an unverified source, so the integrity of 
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this data needs to be considered in the analysis of information. 

 It can be dirty: Dirty data refers to inaccurate, incomplete, or erroneous 

data. This may include the misspelling of words; a sensor that is broken, not 

properly calibrated, or corrupted in some way; or even duplicated data, of course, 

one might say that the dirty data should be cleaned, but in reality it may contain 

interesting outliers so the cleansing strategy will probably depend on the source 

and type of data and the goal of your analysis.  

 The signal-to-noise ratio can be low: In other words, the signal (usable 

information) may only be a tiny percent of the data; the noise is the rest. Being 

able to extract a tiny signal from noisy data is part of the benefit of big data 

analytics. 

 It can be real-time: In many cases, you’ll be trying to analyze real-time data 

streams from social media websites like Facebook or Twitter for instance.(7) 

I.9 Big data Challenges:  

Big data promises to be transformative, the effective use of this data cannot 

only deliver substantial top and bottom line profits but also improve the 

performance of existing functions and also create opportunities for growth and 

expansion, yet very few organizations are able to reap these benefits, the main 

reason being the lack of the right infrastructure to handle big data leading to poor 

data management and consequent loss of revenue. one of the challenges that 

businesses and organization face while delivering big data capabilities is the 

strain that it puts on their existing IT infrastructure due to the huge data influx 

and thereby slowing the systems, businesses will need to invest in a more robust 

architecture that can handle the size and dynamic nature of big data, but before 

looking at the technology architecture supporting big data, let us review some of 

the challenges which are primarily divided into three groups, (i) data, 

(ii) processing and (iii) management challenges.(9)  

I.9.1 Data Challenges:  

while dealing with large amounts of information we face such challenges 

as volume, variety, velocity and veracity. 
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Volume: refers to the large amount of data, especially, machine-generated. 

This characteristic defines a size of the data set that makes its storage and 

analysis problematic utilizing conventional database technology. 

Variety: Multiplicity of the various data implied by variety results in the issue 

of its handling. 

Velocity: the speed of new data generation and distribution requires the 

implementation of real-time processing for the streaming data analysis (e.g. on 

social media, different types of transactions or trading systems, etc.) 

Veracity: refers to the complexity of data which may lead to a lack of quality 

and accuracy. 

This characteristic reveals several challenges: uncertainty, imprecision, 

missing values, misstatement and data availability. There is also a challenge 

regarding data discovery that is related to the search of high quality data in data 

sets. 

I.9.2 Processing Challenges:  

The second branch of Big Data challenges is called processing challenges. It 

includes data collection, resolving similarities found in different sources, 

modification data to a type acceptable for the analysis, the analysis itself and the 

output representation, i.e. the results must be visualized in a form that is most 

suitable for human perception.(9) 

I.9.3 Management Challenges:        

The last type of challenges offered by this classification is related to data 

management. Management challenges usually refer to secured data storage, its 

processing and collection. Here the main focuses of study are: data privacy, its 

security, governance and ethical issues. Most of them are controlled based on 

policies and rules provided by information security institutes on state or 

international levels.(9)  
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Figure I-12 : Big Data Challenges. 

I.10 Big Data Technology Stack:  

The task of getting useful insights out of Big Data is not easy. It is a matter of 

developing comprehensive environment that includes hardware, infrastructure 

software, operational software, management software and application 

programming interface (API) to provide fully functional model managing the Big 

Data requirements. the conceptual representation of this environment represented 

as layered reference architecture is called big data technology stack, as shown in 

Figure I-13, this technology stack is a comprehensive stack that has several 

components that address specific functions of managing big data and tackle the 

special need and challenges of it, these components are grouped in layers where 

each layer performs a different function.(10) These layers work on the big data in 

tandem to produce the desired results, these eight key layers of architecture are 

as follows: 
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Figure I-13 : Big Data technology stack.(7) 

I.10.1 Layer 1 - Redundant Physical Infrastructure:  

It is mainly about the new technology infrastructure to overcome the 

challenges arising from data characteristics like high-volume, high data-variety, 

high-velocity. IT physical infrastructure will provide necessary hardware systems 

with adequate storage, processing power and communication speed matching the 

requirements of Big Data. the optimal IT infrastructure which will suffice your 

Big Data implementation will be clearly determined after you set your 

requirements against each of the following criteria: 

 Performance: this measure the responsive degree of system, as the 

system performance increases the cost of infrastructure increases. 

 Availability: Do you need your system to be up and running for 24/7 

with no interruption? If yes, this means you need high availability infrastructure 

which is also expensive. 

 Scalability: You need to set the size of your infrastructure, the 

storage capacity and the computing power. Also you need to consider additional 

scale for future challenges. 
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 Flexibility: this relates to how fast you can add more resources to 

infrastructure or you can recover from failures. the flexibility degree is 

pragmatically proportional with the cost, the most flexible infrastructures can be 

costly, but we can control the costs with cloud services. Due to the non-stop flow of 

data for Big Data projects the physical infrastructure must be both redundant and 

resilient. Resiliency and redundancy are interrelated. An infrastructure, or a 

system, is resilient to failure or changes when sufficient redundant resources are 

in place, ready to jump into action. 

I.10.2 Layer 2 – Security Infrastructure:  

Security and privacy requirements for big data are similar to the requirements 

for conventional data environments. The security requirements have to be closely 

aligned to specific business needs. The following list describe briefly Some of the 

unique challenges that arise when big data becomes part of the strategy: 

1. Data access: User access to raw or computed big data has about the same 

level of technical requirements as non-big data implementations. The data should 

be available only to those who have a legitimate need for examining or interacting 

with it. 

2. Application access: Application access to data is also relatively 

straightforward from a technical perspective. Most application programming 

interfaces (APIs) offer protection from unauthorized usage or access. 

3. Data encryption: The main solution to ensure the data remains protected 

is to apply encryption however this is the most challenging aspect of security in a 

big data environment, in traditional environments, encrypting and decrypting 

data really stresses the system’s resources, With the volume, velocity, and 

varieties associated with big data, this problem is exacerbated, the simplest 

(brute-force) approach is to provide more and faster computational capability. 

However, this comes with a steep price tag especially when you have to 

accommodate resiliency requirements. A more temperate approach is to identify 

the data elements requiring this level of security and to encrypt only the necessary 

items.  
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4. Threat detection: The inclusion of mobile devices and social networks as 

sources of big data exponentially increases both the amount of data and the 

opportunities for security threats. It is therefore important that organizations take 

a multi-perimeter approach to security. 

I.10.3 Interfaces and Feeds to and from Applications and the  

Internet (API’s): 

So, the physical infrastructure enables everything and security infrastructure 

protects all the elements in your big data environment. The next level in the stack 

is the layer of interfaces and feeds to applications and the internet. 

This layer manages the feed of data into and out of both internally managed 

data and data feeds from external sources, since big data relies on the fact that 

data from lots of sources are picked, this layer becomes critical for the big data 

solutions, interfaces also exist at every level and between each layer of the stack, 

without this layer big data cannot happen. 

I.10.4 Layer 3 – Operational Databases:  

At the heart of a big data environment are fast, scalable, and rock solid 

database engines that contains the collections of data elements relevant to a 

business. A choice has to be made between engines and database languages, a mix 

of engines cloud also coexist within this layer. 

For a long time, most of data management functionalities used to be provided 

only by relational database management systems (RDBMS) and SQL, However, 

in the last decades, new applications emerged and new requirements were raised 

by big data that could hardly be met by relational databases thus the appearance 

of NoSQL databases. 

Let first consider Relational SQL Databases. 

I.10.4.1 Relational Databases and RDBMS:  

A relational database is a data store that organizes data using the relational 

model, data is stored in database objects called tables. A table is a collection of 

related data entries and it consists of columns and rows, and a schema strictly 
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defines the tables, columns, indexes, relationships between tables, and other 

database elements. 

SQL is the most widely used mechanism for creating, querying, maintaining, 

and operating relational databases. These tasks are referred to as CRUD: Create, 

retrieve, update, and delete, Optimization of queries, indexes and tables structure 

is required to achieve peak performance, still this property however dependent of 

the disk subsystem.  

Relational databases management systems (RDBMS) support a set of 

properties defined by the acronym ACID: Atomicity, Consistency, Isolation and 

Durability. 

Atomicity: A transaction is “all or nothing” when it is atomic. If any part of the 

transaction or the underlying system fails, the entire transaction fails. 

Consistency: Only transactions with valid data will be performed on the 

database. If the data is corrupt or improper, the transaction will not complete and 

the data will not be written to the database, data must conform to the schema. 

Isolation: Multiple, simultaneous transactions will not interfere with each 

other. All valid transactions will execute until completed and in the order they 

were submitted for processing. 

Durability: The ability to recover from an unexpected system failure or power 

outage to the last known state. 

A relational database is mostly suited when there is a need on gathering 

business intelligence reports or in-depth analytics of large volumes of structured 

data. Example of RDBMS include: SQL Server, MySQL, Oracle, PostgreSQL,  

Even with all the features, relational databases are not capable to provide the 

scale and agility needed to meet the challenges that face modern applications, nor 

were they designed to take advantage of the inexpensive storage and processing 

power that have become so readily available today. 

 Actually the features of such databases limit the feasibility and scalability of 

it, as in order for example to maintain the ACID properties the database has to 

pass through various parameters which limits its performance and also the 
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schema part is lacking, therefore the need for a new design that overcome those 

limits, that brings us to talk about NoSQL databases. 

I.10.4.2 NoSQL (Not Only SQL) databases:  

NoSQL is the term used to describe high-performance, non-relational 

databases which typically do not enforce a tabular schema of rows and columns 

found in most traditional database systems, instead non-relational databases use 

a storage model that is optimized for the specific requirements of the type of data 

being stored. 

Performance is generally a function of the underlying hardware cluster size, 

network latency, and the calling application, NoSQL databases are designed to 

scale out using distributed clusters of low-cost hardware to increase throughput 

without increasing latency. 

While RDBMS uses ACID (Atomicity, Consistency, Isolation, Durability) as a 

mechanism for ensuring the consistency of data, non-relational DBMS use BASE, 

which stands for Basically Available, Soft state, and Eventual Consistency. Of 

these, eventual consistency is the most important, because it is responsible for 

conflict resolution when data is in motion between nodes in a distributed 

implementation. The data state is maintained by the software and the access 

model relies on basic availability. 

NoSQL is a better choice for businesses whose data workloads are more geared 

toward the rapid processing and analyzing of vast amounts of varied and 

unstructured data, e.g.: Big Data. 

NoSQL databases do not use SQL for queries, and instead use other 

programming languages and constructs to query the data, even though many of 

these databases do support SQL-compatible queries. However, the underlying 

query execution strategy is usually very different from the way a traditional 

RDBMS would execute the same SQL query. 

The following sections describe the major categories of NoSQL database: 
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 Document Databases:  

A document data store manages a set of named string fields and object data 

values in an entity referred to as a document. These data stores typically store 

data in the form of JSON documents. Each field value could be a scalar item, such 

as a number, or a compound element, such as a list or a parent-child collection. 

The data in the fields of a document can be encoded in a variety of ways, including 

XML, YAML, JSON, BSON or even stored as plain text, document store does not 

require that all documents have the same structure. This free-form approach 

provides a great deal of flexibility. Documents are almost equivalent to records in 

relational term, and collections are more similar to tables, whereas fields are 

similar to attributes (columns) in each relation.(11)  

Example of Document databases implementation include: MongoDB, 

CouchDB. 

 

Figure I-14 : A document can have many types of values : scalar , lists and nested 

documents.  

 Columnar databases: 

A columnar or column-family data store organizes data into columns and rows. 

In its simplest form, a column-family data store can appear very similar to a 

relational database, at least conceptually. The real power of a column-family 

database lies in its denormalized approach to structuring sparse data, which stems 

from the column-oriented approach to storing data, you can think of a column-

family data store as holding tabular data with rows and columns, but the columns 
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are divided into groups known as column families. Each column family holds a set 

of columns that are logically related and are typically retrieved or manipulated as 

a unit. 

 

Figure I-15 : Columnar data store 

The above diagram shows an example with two column 

families, Identity  and Contact Info . The data for a single entity has the same row 

key in each column family. This structure, where the rows for any given object in 

a column family can vary dynamically, is an important benefit of the column-

family approach, making this form of data store highly suited for storing data with 

varying schemas. 

The most popular columnar databases are HBase databases which relies 

mainly on Hadoop file system and MapReduce for its operations. we will be 

covering Hadoop and MapReduce in more details later in chapter 04, other 

example of columnar databases include : Cassandra, AmazonSimpleDB. 

 Key/value databases:  

A key/value store is essentially a large hash table. You associate each data 

value with a unique key, and the key/value store uses this key to store the data by 

using an appropriate hashing function. The hashing function is selected to provide 

an even distribution of hashed keys across the data storage. 

Key/value stores are highly optimized for applications performing simple 

lookups using the value of the key, or by a range of keys, but are less suitable for 

systems that need to query data across different tables of keys/values, such as 

https://cassandra.apache.org/
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joining data across multiple tables. 

One widely used open source key-value pair database is called Riak, other 

examples include: Aerospike, LevelDB, DynamoDB. 

 

Figure I-16 : Key/Value data store 

 Graph databases: 

A graph data store manages two types of information, nodes and edges. Nodes 

represent entities, and edges specify the relationships between these entities. Both 

nodes and edges can have properties that provide information about that node or 

edge, similar to columns in a table. Edges can also have a direction indicating the 

nature of the relationship. 

The purpose of a graph data store is to allow an application to efficiently 

perform queries that traverse the network of nodes and edges, and to analyze the 

relationships between entities. The following diagram shows an organization's 

personnel data structured as a graph. The entities are employees and 

departments, and the edges indicate reporting relationships and the department 

in which employees work. In this graph, the arrows on the edges show the direction 

of the relationships.(11) 

Neo4J is the most widely used graph databases, other examples include : 

ArangoDB, OrientDB, BrightstarDB, Meronymy. 

 

http://www.aerospike.com/
http://code.google.com/p/leveldb/
http://aws.amazon.com/dynamodb/
http://www.arangodb.com/
http://orientdb.com/
http://www.brightstardb.com/
http://www.meronymy.com/
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Figure I-17 : Graph data store 

Other examples of NoSQL database types include:  

 Multimodel Databases  

 Object Databases 

 Grid & Cloud Database 

Solutions 

 XML Databases 

 Multidimensional Databases 

 Time Series / Streaming 

Databases 

 Scientific and Specialized DBs 

I.10.5 Layer 4 – Organizing Data Services and Tools:  

Once you have understood what you need, what data you are gathering, where 

to store it, and how to use it, you need to organize it so it can be consumed for 

analytics, reporting, or specific applications, this is where this layer comes into the 

picture.    

Organizing data services and tools layer capture, validate, and assemble 

various big data elements into contextually relevant collections, because big data 

is massive, techniques have evolved to process the data efficiently and seamlessly. 

 Organizing data services are, in reality, an ecosystem of tools and technologies 

that can be used to gather and assemble data in preparation for further processing. 

As such, the tools need to provide integration, translation, normalization, and 

scale. Technologies in this layer has to include the following: 
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 A distributed file system: Necessary to accommodate the decomposition of 

data streams and to provide scale and storage capacity 

 Serialization services: Necessary for persistent data storage and 

Multilanguage remote procedure calls (RPCs) 

 Coordination services: Necessary for building distributed applications 

(locking and so on). 

 Extract, transform, and load (ETL) tools: Necessary for the loading and 

conversion of structured and unstructured data. 

 Workflow services: Necessary for scheduling jobs and providing a structure 

for synchronizing process elements across layers. 

In Chapters 4, we examine Hadoop, the most widely used set of products for 

organizing big data. 

I.10.6 Layer 5 – Analytical Data Warehouses and Data marts:  

A data warehouse is a storage architecture designed to hold data extracted 

from transaction systems, operational data stores, and external sources, the 

warehouse then combines that data in an aggregate, summary form suitable for 

enterprise-wide data analysis and reporting. 

Before we present the component of a data warehouse, let review some 

important concepts related to data warehousing for instance: OTLP and OLAP 

and DataMarts. 

IT systems could be divided into transactional systems (Online Transactions 

Systems: OLTP) and analytical systems (Online Analytical Processing Systems: 

OLAP). In general, we can assume that OLTP systems provide source data to data 

warehouses, whereas OLAP systems help to analyze it. 

OTLP: OLTP systems record business interactions as they occur in the day-

to-day operation of the organization, and support querying of this data to make 

inferences, they are characterized by a large number of short on-line transactions 

(INSERT, UPDATE, DELETE). The main emphasis for OLTP systems is put on 

very fast query processing, maintaining data integrity in multi-access 
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environments and an effectiveness measured by number of transactions per 

second. In OLTP database there is detailed and current data, and schema used to 

store transactional databases is the entity model (usually 3NF), The databases 

that are used for OLTP, however, were not designed for analysis. 

OLAP: These Systems are characterized by relatively low volume of 

transactions. Queries are often very complex and involve aggregations. For OLAP 

systems a response time is an effectiveness measure. OLAP applications are 

widely used by Data Mining techniques. OLAP enables the effectiveness use of 

data warehouses for online analysis, their Key aspect approach is to achieve a 

multi-dimensional analysis of organization data. 

Data marts : A data mart is a subset of data stored within the overall data 

warehouse, for the needs of a specific team, section or department within the 

business enterprise. Data marts make it much easier for individual departments 

to access key data insights more quickly and helps prevent departments within 

the business organization from interfering with each other’s data. 

I.10.6.1 Components of a Data Warehouse:  

The components of a data warehouse are: 

1. ETL: Extract Transform and Load or ETL are Toolsets that help acquire 

variety of data from multiple sources 

2. Warehouse: The storage component which store data of facts and multiple 

perspective from which these facts can be analyzed and which are called 

dimensions. 

3. Metadata: Attributes that could be associated with facts, including source, 

format, update frequency, etc. 

4. Cube: Olap data structure (which is considered as a staging area) that is 

extracted from the data warehouse for specific subject analysis like sales for 

example. 

https://www.sisense.com/blog/demystifying-data-warehouses-data-lakes-data-marts/
https://www.sisense.com/blog/demystifying-data-warehouses-data-lakes-data-marts/
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Figure I-18 : OLAP Cube Sales Data Example. 

5. Reports and dashboard: The visualization that provide business 

insights. 

Figure I-19 highlights the relationships between the components in the 

analytical datawarehouse layer :  
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Figure I-19 : Data Warehouse Component. 

Data is complementary to become like a hybrid structure. This hybrid 

structure will include highly structured data managed by traditional data 

warehouse and the highly distributed and prone to change data is managed by 

Hadoop-controlled solution. 

I.10.7 Layer 6 – Analytics (Traditional and Advanced):  

This layer contains analytics methods that reach into the data warehouses and 

process the data for revealing insights, it contains business intelligence traditional 

techniques as well as advanced data analytics methods. 

I.10.7.1 BI vs. Analytics:  

The increasing complexity of businesses problems, the possibility of several 

alternatives solutions and the limited time available for making the right call in a 

business scenario demands a highly structured decision-making process, most 

businesses use huge amount of historical facts, figures, and data available for 

informed decision making. This is called fact-based decision making and 

collectively the set of tools, technique, and framework that allowed this is called 

business intelligence or BI. 

Organizations rely heavily on BI to run efficiently, and reducing decision cycle 

time, however just making the right decision to run operations smartly is not 
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enough today, as a fiercely competitive world require businesses to use data 

available beyond organizational data, and to foresee future trends, this is where 

advanced analytics come into the picture.   

I.10.7.2 Data Analytics Techniques:  

Businesses today analyzes the growing volumes of unstructured and semi-

structured data available from multiple new sources such as machines, sensors, 

logs, and social media, so let’s discuss a bit more about analytics. 

Data analytics essentially include a set of statistical, mathematical modeling 

methods and machine learning techniques and tools to analyze various types of 

data in huge amounts. 

I.10.7.3 Types of Analytical Applications and Techniques:  

Analytical applications traditional and advanced typically fall under these 

four categories depending on the level of answers:  

 Discovery analytics or BI. 

 Exploratory analysis or data 

mining. 

 Predictive analytics. 

 Prescriptive analyti

 

 

 

Figure I-20 : Categories of Data Analytics Techniques. 
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Let’s cover each of these briefly:  

1. Discovery analytics:  

DA is the study of huge organizational data sets, some techniques that fall into 

this category includes: slicing and dicing, roll ups and downs and business 

graphics. 

2. Exploratory analytics:  

Goes a step further to analyze data deeper with techniques such as:   

a. Statistical analytics: which involves collecting samples of data from a 

bigger stat and scrutinizing it. this aims at identifying trends such as the primary 

buyers of a certain brand of products over the last five years for example. 

b. Text Analytics: this is the process of analyzing unstructured text, 

extracting relevant information and transforming it into structured information, 

that can then be leveraged in various ways, this can be used to detect plagiarism 

in research papers. 

c. Audio / Video Analytics: analyses audio and video data such as those from 

traffic surveillance cameras, for security or vehicle classification purposes or to 

analyses traffic density.  

d. Unstructured data analytics: this helps extract structured information 

from unstructured data, an example of this is fraud detection by analyzing credit 

card data. 

e. Email analytics: analyses the email data of customers or organization 

which can help enhance marketing efforts, for instance use can use email analytics 

applications to track the customers who read your emails and the ones who delete 

it. 

f. Association analytics: help finds interesting relationships in large data 

sets for instance, analyses the purchases of consumers on a grocery store and 

identify the goods they tend to buy together, this can help alter the layout of the 

store to stock related items in one location. 

g. Classification analytics: helps classify data, for instance, a marketing 
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manager can analyses customer profiles and classify the customers into categories 

of the ones who will make a purchase and the ones who will not   

h. Graph mining: graph mining along with subgraph mining are the subject 

of this report and so will be covering them in much more details in the next 

chapter. 

3. Predictive analytics: 

This is an advanced technique that aims to predict the probability of 

occurrence of a future event such as loan defaults, stock market fluctuations and 

so on, and thus taking preventive actions accordingly, some techniques that fall 

into this category include: 

Clustering and segmentation, creating decisions trees, predictive modeling. 

4. Prescriptive analytics:  

This helps analyze future trends to create strategies and find an optimal 

solution to a problem or select an appropriate decision form multiple alternatives, 

unlike predictive analytics that shows the probability of a future event 

prescriptive analytics helps identify a solution to an existing problem for example 

inventory management. 

I.10.8 Layer 7 – Reporting and Visualization:  

 Reporting and dashboards: these are user-friendly tools used to 

represent information collected from various sources. this area is still evolving to 

support Big Data needs and currently it accesses new database technology  

 Visualization: these can be seen as advanced reporting tools which provide 

pictorial or graphical representation for data and help users to easily understand 

the data and relationship of several variables at the same time. the output of these 

tools is greatly interactive and dynamic. these tools have employed new techniques 

to enable users to watch the data as being changing in real time. 

Visualization techniques include: mind maps, heap maps, infographic and 

connection diagrams. 
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I.10.9 Layer 8 – Big Data Applications:  

Users are most interested with the technology products relevant to this layer 

as they are the end products which they interact with. these products can be third-

party applications or in-house applications which can fulfill common requirements 

of multiple industries or the requirement of particular industry. Some examples 

of well-known groups are log data application (Splunk, Loggly), marketing 

applications (Bloomreach, Myrrix) and advanced Media applications (Bluefin, 

DataXu). Building custom products for Big Data should follow up proper software 

development standards, for example to include well-defined API interface which 

will help the developers to access the functionalities exposed by each layer through 

those interfaces 

I.11 Virtualization and Cloud Computing in Big Data:  

With the advent of big data, the nature and volume of data that the 

organization received and needed to handle increased by multiple times this 

required for constant upgradation of hardware and software to handle and analyze 

the data effectively and efficiently.(12) 

Traditionally businesses were incurring huge capital investments year-on-

year for purchasing and maintaining IT infrastructure and software to meet their 

business needs, however this approach was not sustainable in the long run 

businesses can no longer afford to start over and build all new applications every 

time, a solution for this problem was found in the evolution of virtualization and 

cloud computing technologies, these technologies enabled the system to support:  

 On-demand provisioning of resources  

 Full utilization of IT resources 

 Pay per use model of provisioning  

 IT infrastructure support as a service   

Cloud computing and virtualization complement big data by enabling a global on-

demand network access to a shared pool of configurable computing resources. 
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I.11.1 Virtualization:  

The term virtualization refers to the use of software to divide a pool of physical 

infrastructure resources into several logical IT infrastructure resources. 

With virtualization users can create many virtual systems within a single 

physical system rather than assigning a dedicated set of physical resources to a 

set of tasks, a pooled set of virtual resources are allocated as needed across all 

workloads, virtualization also provide a level of automation and standardization 

to optimize a computing environment, it supports the scalability and operating 

efficiency required for big data and this is achieved by its three key 

characterizations which are for instance partitioning, isolation and encapsulation. 

1. Portioning: allows multiple applications and operating systems to exist in 

a single physical system and share available resources.  

2. Isolation: ensures that each virtual machine runs as a separate instance 

and is isolated from the physical system and other virtual machines, thereby 

minimizing the chances of crash or breach of data. 

3. Encapsulation: enables the virtual machine to be presented to an 

application as a complete entity, thereby protecting it from interference by other 

applications. 

                    

Figure I-21 : Partitioning – Isolation – Encapsulation. 
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Some of the important benefits of virtualization includes:  

 Cost Saving.                  

 Security. 

 Efficiency. 

 Enhanced speed.  

 Flexibility. 

In order for the big data environments to scale almost without bounds, the 

elements of it should be virtualized, this includes:  

I.11.1.1 Server virtualization:  

This involves the use of a software application that divides one physical server 

into multiple isolated virtual environments. this ensures the scaling of the big data 

environment to perform analysis of very large data sets. 

I.11.1.2 Application virtualization:  

Big data analysis may require independent deployment of different 

applications, application virtualization encapsulates individual applications for 

big data and removes their dependencies from the underlying physical computer 

system. This in turn improves the overall manageability and portability of these 

applications on different computers. 

 

Figure I-22 : Application Virtualization. 

Other than consolidation of servers and application virtualization, elements 

than can be virtualized and which also have a positive impact on big data include 

network, processors, memory, data, storage and desktop. 

The table below lists this these elements along with their benefits: 
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Table I-2 : Virtualization of different elements. 

.  

I.11.2 Cloud Computing:  

The generally accepted definition of cloud computing comes from the National 

Institute of Standards and Technology NIST, it defines cloud computing as fellow:  

“Cloud computing is a model for enabling convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction.” 

What this means in plain terms is the ability to utilize parts of bulk resources 

and that it enables rapid scaling of resources quickly and easily, often the term 

cloud computing is wrongly used synonymously for virtualization and data center 

however both are different technologies, let’s now look at the difference between a 

data center and a cloud.(12) 
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I.11.2.1 Data Center vs. Cloud Computing:  

A data center refers to on-premise or off-premise networked computer servers 

used within an entreprise for the storage, processing and distribution of vast 

amounts of data. 

A cloud on the other hand is an off-premise internet computing that is used by 

other external enterprises for storage, processing and distribution of vast amounts 

of data.    

Figure I-23 highlights some of their differences:  

Figure I-23 : Data Center vs. Cloud Computing. 

I.11.2.2 Cloud as a solution to big data requirements:  

The benefits of cloud computing can be easily understood and appreciated 

based on the requirements of big data analysis, for any big data implementation 

availability of various components and a plan for their seamless integration and 

ongoing maintenance is a must, cloud allows for self-provision cloud services this 

automates and centralizes maintenance, software updates, configuration and 

other management tasks, cloud computing provides high power servers for 

analyzing big data in minutes, this rapid provisioning, scalability and elasticity is 

a cost effective way to support big data technologies clear benefit of clouds for 

handling big data analysis. 
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Finally, for reliability requirement of big data the cloud needs to provide fault 

tolerance, by the mean of virtualization that help shared applications and 

resources to coexist as independent virtual machines. 

I.11.2.3 Cloud Computing Stack:  

The broad collection of services that are made available to end users on a pay-

as-you-use model by the cloud is commonly referred to as cloud computing stack. 

The stack shows three different categories within cloud computing, Software 

as a service (SaaS), Platform as a service (PaaS), Infrastructure as a service 

(IaaS). 

 

Figure I-24 : Cloud Computing Stack. 

1. Infrastructure as a Service (IaaS):  

IaaS provides hardware, storage and network as a service examples include 

virtual machines, load balancers and network attached storage a business for 

example can save a lot on physical infrastructure by using a public cloud IaaS. 

2. Platform as a Service (PaaS): 

PaaS on the other hand provides a platform to write and run user’s 

applications examples include Windows Azure and Google App Engine (GAE), note 
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that a platform here refers to the OS which is a collection of middleware services 

and software development and deployment tools if an organization uses a private 

cloud PaaS its programmers can create and deploy applications for its needs. 

3. Software as a Service (SaaS):  

Lastly SaaS provides software that can be accessed from anywhere for SaaS to 

work however the infrastructure IaaS and the platform PaaS must be in place. 

 Organizations can choose where, when and how they use these services 

however most organizations use all three services as infrastructure by itself isn’t 

useful and idle till the platform and the necessary information or application is 

made available for solving a particular problem. 

I.11.2.4 Cloud Deployment models:  

different deployment models exist in cloud computing which answer questions 

of ownership, operations and usage. 

1. Public Cloud:  

One model is a public cloud which is owned and operated by an organization 

for use by other organizations and individuals, a public cloud can customize 

hardware and software to optimize performance however problems of security and 

latency are an inherent part of public clouds. 

2. Private Cloud:  

A second cloud deployment model is a private cloud which is owned and 

operated by an organization for its own purposes all stakeholders of an 

organization have access to this cloud, a private cloud incorporates the systems 

and processes of that organization and is highly automated and protected by 

firewall, as a result latency is reduced and security is improved. 

3. Hybrid Cloud:  

Some organizations combine the two last mentioned models in what is called 

a hybrid cloud, a number of connections are formed between the two clouds and 

operations are automated to improve efficiency. 
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Key Points – Chapter 01 : 

 

 We presented the field of big data, gave a brief history of it and the 

different definitions attributed by the practitioners in the field. 

 We defined the characteristics of big data for instance: Volume, Velocity 

and Veracity.   

 We discussed big data types, structured / unstructured, at rest / in motion. 

 We presented the big data technology stack, which is comprehensive 

environment that includes hardware infrastructure and software that 

provide a fully functional model for managing the Big Data requirements. 

 We highlighted some databases technologies associated with big data as 

well as some of the analytical methods traditional and advanced that help 

derive insight and value from big data. 

 We Concluded the chapter by mentioning some of the benefits brought by 

cloud computing and virtualization relative to big data.  
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II. Chapter 02 :  

Graph Theory and Frequent Subgraph Mining 

Context:  

This Chapter defines in details the concept of graph mining and focus 

primarily on frequent subgraph mining (FSM), it is organized in two parts:   

Part 01 mainly dedicated to present, in a simplified way, the basic notions 

related to graphs and graph theory. 

Part 02, focus on presenting “the state of the art” of Frequent Subgraph mining 

(FSM) algorithms and techniques. A survey of current research in the field, and 

solutions to address the main research issues are also presented.  

  

II.1 Data mining:  

Data mining is a particular step in the process of Knowledge Discovery in 

databases (KDD), which has a to extract statistically significant and useful 

knowledge from a huge volume of raw data sets, extracting such important 

knowledge can be crucial, sometimes essential, for the next phase in the analysis: 

the modeling.(13) The KDD process is outlined in figure II-1. 
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Figure II-1: The steps of the KDD process.(14) 

The additional steps in the KDD process include the data selection and 

projection, and the visualization, and evaluation steps. 

During the past decade, the field of data mining has emerged as a novel field 

of research, investigating interesting research issues and developing challenging 

real-life applications. The objective data formats in the beginning of data mining, 

were limited to relational tables and transactions where each instance is 

represented by one row in a table or one transaction represented as a set.  

However, the studies within the last several years began to extend the classes 

of considered data to semi-structured data such as HTML and XML texts, symbolic 

sequences, and relations represented by advanced logics. 

Frequent pattern mining for instance has been a focused theme in data mining 

research for over a decade. Abundant literature has been dedicated to this 

research and tremendous progress has been made, ranging from efficient and 

scalable algorithms for frequent item set mining in transaction databases, mining 

association rules, to numerous research frontiers, such as sequential pattern 

mining. However, the arising and variety of the above-mentioned complex semi 

structured data and the need of discovering structural patterns in large datasets, 

which go beyond sets, sequences, and trees, toward complicated structure, makes 

the frequent item sets and frequent sequence mining approaches inefficient and 
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unsuitable for such requirements, thus the emergence of graphs and frequent 

structural mining as a solution to these concerns. 

Certainly graphs as a data structure can meet the demands of modeling 

complicated substructure patterns and relations among data, and they are 

suitable representation for complex objects so from this perspective, there has 

been much interest in the mining of graph data, (often referred to as graph based 

data mining or shortly graph mining). 

II.2 Graph mining: 

Generally speaking, Graph mining is the process of discovering, retrieving and 

analyzing non trivial patterns in graph shaped data. Graph based data mining or 

graph mining has a strong relation with Multi-relational data mining. However, 

the main objective of graph mining is to provide new principles and efficient 

algorithms to mine topological substructures embedded in graph data, while the 

main objective of multi-relational data mining is to provide principles to mine 

and/or learn the relational patterns, represented by the expressive logical 

languages, the former is more geometry oriented and the latter more logic and 

relation oriented.(15)  

 

 

 

 

 

 

 

 

 

 

 

Graph 

Mining 

Figure II-2 : Graph mining Related Concept 
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A number of popular research sub-domains of graph mining are listed in Table  

Table II-1 : Graph mining research subdomains 

Frequent subgraph mining(16–18)                                                                                                                                                                                                                                                                           

Correlated graph pattern mining(19)  

Optimal graph pattern mining(20) 

Approximate graph pattern mining(21)  

Graph pattern summarization(22)  

Graph classification(23)  

Graph clustering(24,25) 

Graph indexing(26)  

Graph searching(27,28) 

Graph kernels(29–31) 

Link mining(32–34) 

Web structure mining(35)(36)  

Work-flow mining(37)  

Biological network mining(38)                    

 

II.3 Graphs applications:  

Due to its capability of modeling complicated structures, graph representation 

of data is well adopted and prevalent in a variety of domains including 

wired/wireless interconnections (networks), 2D/3D objects (vision and pattern 

recognition), chemical compounds/biological networks (chem/bio-informatics), 

circuits (computer-aided design), loosely schemed data (XML), RDF data 

(semantic web), program traces (software engineering), social media, etc.(39) 

In chemistry for example chemical data, Chemical data (molecules, 

compounds) is often represented as graphs in which the nodes correspond to 

atoms, and the links correspond to bonds between the atoms. 

Figure II-3 present a graph representation of a chemical compound: 
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Figure II-3 : Graph representation of a chemical compound.(13) 

Benefiting from systems for searching and mining frequent pattern in 

chemical compounds, researchers can do screening, designing, and knowledge 

discovery in large-scale compound and molecular data sets. 

 

Figure II-4 : Frequent subgraph mined from a variety of chemical compounds 

In software engineering a program can be modeled by control flow graph where 

basic blocks are represented as nodes and edges between nodes indicate the 

possible flow of the program. Analysis of control flow graphs can shed light on the 
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static and dynamic behaviors of programs and aid in detecting malware and 

viruses. 

Additionally, advanced frequent patterns mining techniques can help us 

understand different advanced functions and relations. For example, in a protein-

protein interaction network (PPI), a frequent pattern could uncover unknown 

functions of a protein. Similarly, in a social network, a frequent pattern could show 

a friend clique. 

Figure II-5 shows a protein–protein interaction network, represented as a graph 

where vertexes denote different proteins and the edges denote the physical 

interactions between them, additionally Figure II-6 shows an example of a social 

network graph representation. 

 

Figure II-5 : Protein – Protein interaction network. 



CHAPTER 02                                          GRAPH THEORY AND FREQUENT SUBGRAPH MINING 

 

54 

 

 

Social media networks (graphs), along with other example of recommendation 

and knowledge graphs has the feature of being complex, ubiquitous and valuable, 

therefore applying advanced mining techniques for finding frequent patterns that 

specify a given minimum frequency constraint, could help reveal the rules that 

derives their evolution. 

Facebook  

1.5 Bln Users 

450 Bln Relatioships 

600 Mln Groups 

   Twitter  

313 Mln Users 

500 Mln Tweets/day 

Avg 208 followers/user 

Figure II-6 : Social media graphs : there are complex Groups, links, preferences 

and attributes. 

Figure II-7 : Mining graph evolution rules. 
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II.4 What is Involved in graph mining:  

 Basic graph algorithms (shortest paths, BFS, DFS, isomorphisms, 

traversals, random walks …) 

 Storage and indexing 

 Smart representations for compactness 

 Modeling of    problems as graphs 

 Distance metrics and similarity measures 

 Exact, Approximate, and heuristic algorithms 

 Evolving structures 

 Interactivity and online updates 

 Complexity (most of the problems are not polynomially solvable) 

II.5 Frequent subgraph mining (FSM):  

Among the various kinds of graph pattern, frequent subgraphs are very basic 

ones that can be discovered in a set of graphs (graph database) or a single large 

graph, they are useful at characterizing graphs sets, discriminating different 

groups of graphs, classifying and clustering graphs and building graphs indices, 

frequent subgraph mining encompass all the techniques and methodologies used 

to discover such patterns.(40) 

Before diving into the details of the variant frequent subgraph mining 

approaches and algorithms, let’s review first some of graph theory basic concepts 

and terminologies.   

II.6 Graph theory:  

Graph theory is a branch of discrete mathematics that deals with the way 

objects are connected. Thus, the connectivity in a system is a fundamental quality 

of graph theory. The principal concept in graph theory is that of a graph. For a 

mathematician, a graph is the application of a set on itself, i.e., a collection of 

elements of the set and the binary relations between these elements. Graphs are 
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one-dimensional objects, but they can be embedded or realized in spaces of higher 

dimensions.(41) 

II.7 Preliminary definitions: 

In the following paragraphs a number of widely used definitions, used later in 

this chapter are introduced: 

II.7.1 Types of graphs:  

Generally speaking, a graph 𝑮 (𝑽, 𝑬) is defined to be a set 𝑉 of vertexes (nodes) 

which are interconnected by a set 𝐸 of edges (links). The number of elements N in 

V is called the order of 𝐺 and it is noted |𝑉| = 𝑁 and the number of elements 𝑀 in 

𝐸 is the size of 𝐺 and it is noted |𝐸| = 𝑀. 

Simple and multigraphs : In a graph 𝐺, when any two vertices of 𝑉 are 

joined by more than one edge, the graph is called a multigraph. A graph without 

loops and with at most one edge between any two vertices is called a simple 

graph The graphs used in FSM are assumed to be labelled simple graphs. 

 

 

 

 

 

 

 

In a graph 𝐺 (𝑉, 𝐸) for an edge 𝑒 =  {𝑢, 𝑣}, we say: 

- 𝑒 connects 𝑢 and 𝑣. 

- 𝑢 and 𝑣 are end points of e. 

- 𝑢 and e are incident (𝑣 and 𝑒 are incident). 

- 𝑢 and 𝑣 are adjacent or neighbors.  

(a) (b) 

Figure II-8 : (a) Simple Graph, (b) nom simple graph having 

multiple edge (left) nom simple graph having loops(right). 

https://www.britannica.com/science/multigraph
https://www.britannica.com/science/simple-graph
https://www.britannica.com/science/simple-graph
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The degree deg(𝒗) of a vertex 𝑣 is the number of edges incident to it. A vertex 

of degree 0 is called isolated.(42)  

Regular Graphs : a graph 𝐺 in which all vertices are of equal degree is called 

a regular graph, A regular graph of degree 𝑘 is also called 𝒌 − 𝑹𝒆𝒈𝒖𝒍𝒂𝒓. 

 

Figure II-9 : 3-Regular graph k=3. 

Labeled Graphs : A labelled graph can be represented as 𝐺(𝑉, 𝐸, 𝐿𝑉 , 𝐿𝐸 , 𝜑) 

,where 𝑉 is a set of vertexes, 𝐸  𝑉 𝑥 𝑉 is a set of edges; 𝐿𝑉  and 𝐿𝐸  are sets of vertex 

and edge labels. respectively; and 𝜑 is a label function that defines the mappings 

𝑉 → 𝐿𝑉 and 𝐸 → 𝐿𝐸  , When the edge labels are members of an ordered set (e.g., 

the real numbers), a labeled graph may be called a weighted graph.(43) 

  

Figure II-10 : Unlabeled and Labeled graphs. 

Directed and undirected graphs : a graph 𝐺 is un- directed if ∀ 𝑒 𝜖 𝐸, 𝑒 is an un-

ordered pair of vertexes, and directed otherwise.  

 

https://en.wikipedia.org/wiki/Real_number
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Walk, Trails , Paths and Cycles : A walk of a graph 𝐺 is an alternating 

sequence of vertices and edges 𝑣0, 𝑒1, 𝑣1, …… . . , 𝑣𝑖−1, 𝑒𝑖, 𝑣𝑖 beginning and ending with 

vertices, in which each edge is incident with two vertices immediately preceding 

and following it. This walk joins the vertices 𝑣0 and 𝑣𝑖, and may also be denoted 

by 𝑣1, 𝑣2, …… . . , 𝑣𝑖 (the edges being evident by context). The length 𝑙 of a walk is the 

number of occurrences of edges in it; 𝑣0 is called the ini1ial vertex of the walk, 

while 𝑣𝑖, is called the terminal vertex of the walk.  

For example, the graph below outlines a possibly walk (in blue). The walk is 

denoted as 𝑎𝑏𝑐𝑑𝑏. Note that walks can have repeated edges. For example, if we 

had the walk 𝑎𝑏𝑐𝑑𝑐𝑏𝑐𝑒, then that would be perfectly fine even though some edges 

are repeated. 

 

 In the graph above, the length of the walk is 𝑎𝑏𝑐𝑑𝑏 is 4 because it passes 

through 4 edges. 

A closed walk is a 𝑣𝑖 − 𝑣𝑖 walk, i.e., a walk which starts and ends at the same 

vertex 𝑣𝑖, Otherwise, a walk is said to be open. 

For example, the follow graph shows a closed walk in green: 

 

Figure II-11 : Undirected graph (left), Directed graph (right). 
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Notice that the walk can be defined by 𝑐𝑒𝑔𝑓𝑐, and the start and end vertices of 

the walk is c. Hence this walk is closed. 

A walk is a trail if all the edges are distinct. So far, both of the earlier 

examples can be considered trails because there are no repeated edges. Here is 

another example of a trail: 

 

Notice that the walk can be defined as 𝑎𝑏𝑐. There are no repeated edges so this 

walk is also a trail. 

Now let's look at the next graph: 

 

Notice that this walk must repeat at least one edge. 
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 A walk is a path if all vertices (and thus necessarily all edges) are distinct, in 

other means a path is defined as an open trail with no repeated vertices. 

Notice that all paths must therefore be open walks, as a path cannot both start 

and terminate at the same vertex. For example, the following orange colored walk 

is a path:  

 

because the walk 𝑎𝑏𝑐𝑑𝑒 does not repeat any edges. 

Now let's look at the next graph with the teal walk. This walk is NOT a path 

since it repeats a vertex, namely the pink vertex 𝑐: 

 

Moreover, a cycle in G is defined as a closed trail where no other vertices are 

repeated apart from the start/end vertex. And additionally an acyclic graph G is 

defined as a graph having no cycle.  

Below is an example of a cycle. Notice how no edges are repeated in the 

walk 𝑏𝑐𝑔𝑓𝑏, which makes it definitely a trail, and that the start and end vertex b is 

the same which makes it closed. 
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Connected and complete graphs : 𝐺 is connected, if it contains a path for 

every pair of vertexes in it and disconnected otherwise. 𝐺 is complete (clique) if each 

pair of vertexes is joined by an edge.(44) 

 

 

 

 

 

II.7.2 Subgraph:     

Given two graphs 𝐺1(𝑉1, 𝐸1, 𝐿𝑉1 , 𝐿𝐸1 , 𝜑1) and 𝐺2(𝑉2, 𝐸2, 𝐿𝑉2 , 𝐿𝐸2 , 𝜑2) 𝐺1 is a called a 

general subgraph of 𝐺2, if 𝐺1satisfies: (𝑖) 𝑉1  ⊆  𝑉2 , and ∀𝑣 𝜖 𝑉1,𝜑1(𝑣)  =  𝜑2(𝑣), 

(𝑖𝑖) 𝐸1  ⊆  𝐸2, and ∀(𝑢, 𝑣) 𝜖 𝐸1, 𝜑1(𝑢, 𝑣)  =  𝜑2(𝑢, 𝑣). Figure II-13 (a) is an example of 

the general subgraph in which a vertex 𝑣5  and edges 𝑒4;  𝑒6;  𝑒7;  𝑒8;  𝑒9 are missed 

𝐺1 is an induced subgraph of 𝐺2, if 𝐺1 further satisfies: ∀𝑢, 𝑣 𝜖 𝑉1, (𝑢, 𝑣)𝜖 𝐸1 ⇔

(𝑢, 𝑣) 𝜖 𝐸2,simply put, an induced subgraph 𝐺1 of a graph 𝐺2 has a subset of the 

vertices of 𝐺2 and the same edges between pairs of vertices as in 𝐺2. in addition to 

the above conditions. 𝐺2 is also a supergraph of 𝐺1 . Figure II-13 (c) is an example 

of the induced subgraph in which a vertex 𝑣  5 is missed. In this case, only the edges 

K5 K3 

Figure II-12 : Two complete and connected graphs with 5 and 3 vertices 

respectively when considered together they form a disconnected graph. 
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𝑒8 and 𝑒9 are also missed, and 𝑒4;  𝑒6;  𝑒7 are retained since they exist among 𝑣1;  𝑣3 

and 𝑣4 in the original 𝐺.(43) 

The third important and generic class of the substructure is a connected 

subgraph where 𝑉1  ⊆  𝑉2 , 𝐸1  ⊆  𝐸 , and all vertices in 𝑉1 are mutually reachable 

through some edges in 𝐸1. Figure II-13 (d) Is an example where 𝑣6 is further missed 

from (c). 

 

 

Figure II-13 : (a) a graph G , (b), (c) , (d) represent a general, induced, and 

connected subgraphs respectively.(15) 

II.7.3 Graph isomorphism: 

A graph 𝐺1(𝑉1, 𝐸1, 𝐿𝑉1 , 𝐿𝐸1 , 𝜑1)  is isomorphic to another graph 

𝐺2(𝑉2, 𝐸2, 𝐿𝑉2 , 𝐿𝐸2 , 𝜑2) and is noted : 𝐺1 −̃ 𝐺2 if and only if a bijection f : 𝑉1  →  𝑉2 exists 

such that: (𝑖) ∀ 𝑢 𝜖 𝑉1, 𝜙1(𝑢)  =  𝜙2(𝑓(𝑢)), (𝑖𝑖)∀(𝑢, 𝑣) ∈  𝐸1  ⇔ (𝑓(𝑢), 𝑓(𝑣)) 𝜖 𝐸2, 

(𝑖𝑖𝑖) ∀(𝑢, 𝑣)  ∈  𝐸1, 𝜙1(𝑢, 𝑣)  =  𝜙2(𝑓(𝑢), 𝑓(𝑣)). The bijection 𝑓 is an isomorphism 

between 𝐺1and 𝐺2. A graph 𝐺1 is subgraph isomorphic to a graph 𝐺2, if and only 

if there exists a subgraph 𝑔 ⊆  𝐺2 such that 𝐺1 is isomorphic to g. In this case 𝑔 is 

called an embedding of 𝐺1 in 𝐺2.(43) 

Figure II-15, and Figure II-16 present respectively graph and subgraph 

isomorphism:  
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Figure II-14 : Graph isomorphism. 

The two graphs shown above are isomorphic, despite their different 

looking drawings. 

 

Figure II-15 : Subgraph Isomorphism. 

Think of a graph isomorphism as of being a structure preserving bijection, and 

it follows from the definition that the isomorphic graphs are identical, but 

differently drawn, graphs. 

Generally, the problem of recognizing isomorphic graphs is one of the grand 

unsolved problems of graph theory. Construction of all N! possible mappings from 

one graph to another (where N is the number of vertices), although obviously 

impractical, remains as the only secure check for isomorphism of graphs. 

𝜑 

𝑔 𝐺1 

𝐺2 

https://en.wikipedia.org/wiki/Graph_drawing
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An invariant of a graph 𝐺 is a quantity associated with 𝐺 which has the same 

value for any graph isomorphic to 𝐺. Consequently, graph invariants are 

quantities independent of the labeling of the vertices of a graph. Hence, the 

number of vertices and the number of edges are invariants. A complete set of 

invariants determines a graph up to isomorphism. 

II.7.4 Automorphism: 

An isomorphic mapping of the vertices of a graph 𝐺 onto themselves (which 

also preserves the adjacency relationship) is called an automorphism of a graph 

𝐺. Evidently, each graph possesses a trivial automorphism which is called the 

identity automorphism. For some graphs, it is the only automorphism; these are 

called identity graphs. The set of all automorphisms of a graph 𝐺 forms a group 

which is called the automorphism group of 𝐺.(45) 

II.7.5 Lattice:  

Given a database 𝐺, a lattice is a structural form used to model the search 

space for finding frequent subgraphs, where each vertex represents a connected 

subgraph of the graph in 𝐺. The lowest vertex depicts the empty subgraph and the 

vertexes at the highest level depict the graphs in 𝐺. A vertex 𝑝 is a parent of the 

vertex 𝑞 in the lattice, if 𝑞 is a subgraph of 𝑝, and 𝑞 is different from 𝑝 by exactly 

one edge. The vertex 𝑞 is a child of 𝑝. All the subgraphs of each graph 𝐺𝑖 𝜖 𝐺 which 

occur in the database are present in the lattice and every subgraph occurs only 

once in it.(43) 
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Figure II-16 : Lattice(G). 

Example: given a graph data set 𝐺 =  {𝐺1, 𝐺2, 𝐺3, 𝐺4}, the corresponding 

Lattice(𝐺), is given in Figure II-16. In the figure, the lowest vertex ∅ represents 

the empty subgraph, and the vertexes at the highest level correspond to 𝐺1, 𝐺2, 𝐺3, 

and 𝐺4. The parents of the subgraph 𝐵 − 𝐷 are subgraphs 𝐴 − 𝐵 − 𝐷 (joining the 

edge 𝐴 − 𝐵) and 𝐵 − 𝐷 − 𝐺 (joining the edge 𝐷 − 𝐺). Similarly, subgraphs 𝐵 − 𝐶 and 

𝐶 − 𝐹 are the children of the subgraph 𝐵 − 𝐶 − 𝐹. 

II.7.6 Density:  

The density of a graph 𝑮 =  (𝑽; 𝑬) is calculated by:  

𝑑𝑒𝑠𝑛𝑠𝑖𝑡𝑦(𝐺) = 2 .
|𝐸|

(|𝑉| . (|𝑉| − 1))
.  

The graph density measures the ratio of the number of edges compared to the 

maximal number of edges in a complete graph. A graph is said to be dense if the 

ratio is close to 1, and is considered as sparse if the ratio is close to 0.(13) 

II.7.7 Trees:  

Free Tree: a free tree is defined as an undirected graph that is connected and 

acyclic. 

Labelled Unordered Tree: A labeled unordered tree (an unordered tree, for 

short) is  directed acyclic graph denoted as 𝑇(𝑉, 𝜑, 𝐸, 𝑣𝑟), where 𝑉 is a set of vertexes 

of 𝑇; 𝜑 is a labeling function, such that ∀𝑣𝑖  ∈  𝑉, 𝜑(𝑣𝑖) →  𝑣𝑖; 𝐸 ⊆  𝑉 ×  𝑉 is a set of 
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edges of 𝑇; and 𝑣𝑟 is a distinguished vertex called root of 𝑇. For ∀𝑣𝑖  ∈  𝑉, there is a 

unique path (𝑣𝑟 , 𝑣1, 𝑣2, …… . . , 𝑣𝑖) from the root 𝑣𝑟 to 𝑣𝑖. If a vertex 𝑣𝑖  is on the path 

from the root to the vertex 𝑣𝑗  , then 𝑣𝑖  is an ancestor of 𝑣𝑗  , and 𝑣𝑗   is a descendant of 

𝑣𝑖. For each edge (𝑣𝑖  , 𝑣𝑗) 𝜖 𝐸 , 𝑣𝑖   is the parent of 𝑣𝑗, and 𝑣𝑗   is a child of 𝑣𝑖. Vertexes 

that share the same parent are siblings. The size of 𝑇 is defined to be the number 

of vertexes in 𝑇. A vertex without any child is a leaf vertex; otherwise it is an 

intermediate vertex. The right most path of 𝑇 is the path from the root vertex to the 

rightmost leaf. The depth(level) of a vertex is the length of the path from the root to 

that vertex. 

Labelled Ordered Tree: A labelled ordered tree (an ordered tree, for short) 

is a labelled unordered tree but with a left-to-right ordering imposed among the 

children of each vertex. 

Other form of subtrees includes: Bottom-up subtree, Induced Subtree and 

embedded Subtree. 

II.8 Overview of FSM:  

Frequent Subgraph Mining (FSM) is the essence of graph mining, The field of 

study concentrates on the identification of frequent subgraphs within graph data 

sets. The research goals are directed at: (i) effective mechanisms for generating 

candidate subgraphs (without generating duplicates) and (ii) how best to process 

the generated candidate subgraphs so as to identify the desired frequent 

subgraphs in a way that is computationally efficient and procedurally effective. 

frequent subgraphs are considered so, if their counts are above a minimum 

support threshold. Figure II-8 (a) presents an overview of the domain of FSM in 

terms of the number of significant FSM algorithms that have been proposed over 

the period 1994 to the present. From the figure we can see periods of activity in 

the early 90s (coinciding with the introduction of the concept of data mining) 

followed by another period of activity from 2002 to 2007. No “new” algorithms have 

been introduced over the past few years, indicating that the field is reaching 

maturity, although there has been much work focused on variations of existing 

algorithms. 
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Other than the research activity associated with FSM the importance of FSM 

is also reflected in its many areas of its application. Figure II-8 (b) presents an 

overview of the application domain of FSM in terms of the number of FSM 

algorithms reported in the literature and the specific application domain at which 

they have been directed. From the figure it can be seen that three application 

domains (chemistry, web, and biology) dominated the usage of FSM algorithms. 

The straightforward idea behind FSM is to “grow” candidate subgraphs, in 

either a breadth first (BFS) or depth first (DFS) manner (candidate generation), 

and then determine if the identified candidate subgraphs occur frequently enough 

in the graph data set for them to be considered interesting (support counting). The 

two main research issues in FSM are thus how to efficiently and effectively:  

(i)  Generate the candidate frequent subgraphs. 

(ii) Determine the frequency of occurrence of the generated subgraphs.(43)  

Effective candidate subgraph generation requires that the generation of duplicate 

or superfluous candidates is avoided. Occurrence counting requires repeated 

comparison of candidate subgraphs with subgraphs in the input data, a process 

known as isomorphism checking. FSM, in many respects, can be viewed as an 

extension of Frequent Itemset Mining (FIM) popularized in the context of 

association rule mining (see for example (46)). Consequently, many of the proposed 

solutions to addressing the main research issues effecting FSM are based on 
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Figure II-17 : The distribution of the most significant FSM algorithms with 

respect to year of introduction and application domain. 
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similar techniques found in the domain of FIM. For example, the downward 

closure property (DCP) associated with itemsets has been widely adopted with 

respect to candidate subgraph generation, we will define it later in the chapter. 

II.9 Formalism:  

There are two separate problem formulations for FSM: (i) graph transaction 

based FSM and (ii) single graph based FSM. In graph transaction based FSM, the 

input data comprises a collection of medium-size graphs called transactions. Note 

that the term “transaction” is borrowed from the field of Association Rule 

Mining.(47)  

In single graph based FSM the input data, as the name implies, comprises one 

very large graph. 

A subgraph 𝑔 is considered to be frequent if its occurrence count is greater than 

some predefined threshold value. The occurrence count for a subgraph is usually 

referred to as its support, and the consequently the threshold is referred to as the 

support threshold. The support of 𝑔 may be computed using either transaction-based 

counting or occurrence-based counting. Transaction based counting is only applicable 

to graph transaction based FSM, while occurrence-based counting may be applied 

to either transaction based FSM or single graph based FSM. However, occurrence-

based counting is typically used with single graph based FSM. 

In transaction-based counting the support is defined by the number of graph 

transactions that 𝑔 occurs in, one count per transaction regardless of whether 𝑔 

occurs once or more than once in a particular graph transaction. Thus, given a 

database 𝐺 =  {𝐺1, 𝐺2, 𝐺3… . . , 𝐺𝑇} consisting of a collection of graph transactions, 

and a support threshold 𝜎 𝜖 [0,1]  then the set of graph transactions where a 

subgraph 𝑔 occurs is defined by 𝛿𝐺(𝑔)  =  {𝐺𝑖|𝑔 ⊆  𝐺𝑖  }. Thus, the support of 𝑔 is 

defined as: 

𝑠𝑢𝑝𝐺(𝑔)  =  |𝛿𝐺(𝑔)|/𝑇 

where |𝛿𝐺(𝑔)| denotes the cardinality of 𝛿𝐺(𝑔) and 𝑇 the number of graphs 

(transactions) in 𝐺. Therefore, 𝑔 is frequent if and only if 𝑠𝑢𝑝𝐺(𝑔)   ≥  𝜎. In 
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occurrence-based counting we simply count up the number of occurrences of 𝑔 in 

the input set, (note that we are interested only on the transaction based FSM in 

this report.)   

Transaction-based counting offers the advantage that the well-known 

Downward closure property  can be employed to significantly reduce the computation 

overhead associated with candidate generation in FSM. In the case of occurrence-

based counting, either an alternative frequency measure, which maintains the DC 

property, must be established; or some heuristics adopted to keep the computation 

as inexpensive as possible.(43)  

II.10 Graph isomorphism detection:  

The kernel of FSM is (sub)graph isomorphism detection. Graph isomorphism is 

neither known to be solvable in polynomial time nor NP-complete, while subgraph 

isomorphism, where we wish to establish whether a subgraph is wholly contained 

within a super graph, is known to be NP-complete (48). When restricting the 

graphs to trees, (sub)graph isomorphism detection becomes (sub)tree isomorphism 

detection. Tree isomorphism detection can be solved in a linear time. 

Subgraph isomorphism detection is fundamental to FSM. A significant 

number of “efficient” techniques have been proposed, all directed at reducing, as 

far as possible, the computational overhead associated with it. Subgraph 

isomorphism detection techniques can be roughly categorized as being either: 

exact matching (49–53) or error tolerant matching (54–57). Most FSM algorithms 

adopt exact matching. A categorization of the main exact matching subgraph 

isomorphism detection algorithms is presented in Table 2. 

Table II-2 : Categorization of exact matching (sub) graph isomorphism testing 

algorithms. 

Algorithms Main Techniques Matching Types 

Ullman Backtracking + look ahead Graph & subgraph isomorphism 

SD Distance matrix + backtracking Graph isomorphism 

Nauty Group theory + canonical labeling Graph isomorphism 
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VF DFS strategy + feasibility rules Graph & subgraph isomorphism 

VF2 VF’s rationate + advanced data 

structures 

Graph & subgraph isomorphism 

 

With reference to Table 2, Ullmann’s algorithm employs a backtracking 

procedure with a look-ahead function to reduce the size of the search space (49). 

The SD algorithm, in turn, utilizes a distance matrix representation of a graph 

with a backtracking procedure to reduce the search (50). The Nauty algorithm 

(51) uses group theory to transform graphs to be matched into a canonical form so 

as to provide for more efficient and effective graph isomorphism checking. 

However, it has been noted (58) that the construction of the canonical forms can 

lead to exponential complexity in the worst case. Although Nauty was regarded as 

the fastest graph isomorphism algorithm by Conte (58), Miyazaki in (59) 

demonstrated that there exist some categories of graphs which required 

exponential time to generate the canonical labelling. The VF (52) and VF2 (53) 

use a Depth First Search (DFS) strategy, assisted by a set of feasibility rules to 

prune the search tree. VF2 is an improved version of VF, that explores the search 

space more effectively so that the matching time and the memory consumption are 

significantly reduced. 

II.11 Search strategy:  

There are two basic search strategies employed for mining frequent 

subgraphs, the depth first search (DFS) strategy and the breadth first search 

(BFS) strategy. 

 The Depth First Search (DFS) strategy is a method for traversing or searching 

tree or graph data structures. It starts at the root (selecting a node as the root in 

the graph case) and explores as far as possible along each branch before 

backtracking. 

the Breadth First Search (BFS) uses the opposite strategy that is performed 

by DFS. It starts at the tree root (or some arbitrary node of a graph, sometimes 

referred to as a ‘search key’), and explores all of the neighbor nodes at the present 

https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology
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depth prior to moving on to the nodes at the next depth level. Figure II-9 Illustrate 

the process of DFS and BFS. 

 

Figure II-18 : DFS and BFS search strategies. 

II.12 FSM algorithmic approaches:  

This section provides a generic overview of the process of FSM, it is widely 

accepted that FSM techniques can be divided into two categories:  

(i)  Apriori-based approaches. 

(ii) Pattern growth-based approaches. 

These two categories are similar in spirit to counterparts found in Association 

Rule Mining (ARM), namely the Apriori algorithm (46) and FP-growth algorithm 

(60) respectively. Before defining each of them let’s review first the apriority 

property. 

II.12.1 Apriori Property:  

The Apriori property also known as the downward closure property (DCP), 

expresses a monotonic decrease of an evaluation criterion accompanying with the 

progress of a sequential pattern mining. It is activated in order to efficiently 

discover all frequent sequential patterns, in simple terms this property impose 

that if a graph is frequent, then all of its subgraphs will also be frequent, thus the 

frequency or the support of a sequential graph is always decreasing or remaining 

constant, and never increases to overpass the support of its parent subgraphs. 
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This property must be hold for both the Apriori and the Pattern growth based 

algorithms to safely prune the candidates that are not frequent. 

II.12.2 Apriori based approach:  

The Apriori-based approach proceeds in a generate-and-test manner using a 

Breadth First Search (BFS) strategy to explore the subgraph lattice of the given 

database. Therefore, before considering (𝑘 +  1) subgraphs, this approach has to 

first consider all 𝑘 subgraphs.(43) 

The general framework of Apriori-based algorithms is outlined in the 

Algorithm AprioriGraph below:  

 

Figure II-19 : Apriori Algorithm. 
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Let 𝑆𝑘 be the frequent subgraph set of size 𝑘, the Algorithm AprioriGraph 

adopts a level-wise mining methodology. At each iteration, the size of newly 

discovered frequent subgraphs is increased by one. These new subgraphs are first 

generated by joining two similar frequent subgraphs that are discovered in the 

last call of the Algorithm. The newly formed graphs are then checked for their 

frequency. The frequent ones are used to generate larger candidates in the next 

round. The main design complexity of Apriori-based algorithms comes from the 

candidate generation step. Although the candidate generation for frequent itemset 

mining is straightforward, the same problem in the context of graph mining is 

much harder, since there are many ways to merge two graphs. The diagram of 

figure II-10 highlight the Apriori subgraph generation method.  

 

 

II.12.3 Pattern Growth Approach:  

The pattern growth-based adopts a DFS or BFS strategies to explore the 

subgraph lattice, and for each discovered subgraph 𝑔, the subgraph is extended 

recursively until all frequent supergraphs of 𝑔 are discovered. 

Algorithm PatternGrowthGraph illustrates a framework of pattern growth-

based frequent graph mining algorithms. A graph 𝑔 can be extended by adding a 

new edge 𝑒. The newly formed graph is denoted by 𝑔 𝑥 𝑒 . Edge 𝑒 may or may not 

introduce a new vertex to 𝑔. For each discovered graph 𝑔, PatternGrowth performs 

extensions recursively until all the frequent graphs with 𝑔 embedded are 

discovered. The recursion stops once no frequent graph can be generated any more. 

Figure II-20 : Apriori-based Approach. 
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Figure II-21 : PatternGrowth algorithm. 

The Algorithm above is simple, but not efficient. The bottleneck is at the 

inefficiency of extending a graph. The same graph can be discovered many times. 

For example, there may exist 𝑛 different (𝑛 −  1) −edge graphs which can be 

extended to the same 𝑛 −edge graph. The repeated discovery of the same graph is 

computationally inefficient. A graph that is discovered at the second time is called 

duplicate graph. Although Line 1 of the Algorithm gets rid of duplicate graphs, the 

generation and detection of duplicate graphs may cause additional workloads. In 

order to reduce the generation of duplicate graphs, each frequent graph should be 

extended as conservatively as possible in a sense that not every part of each graph 

should be extended. 

The diagram of figure II-11 highlight the pattern growth subgraph generation 

method. 
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Figure II-22 : PatternGrowth-based approach. 

II.13 Basic Framework of FSM algorithms:  

Most existing FSM algorithms (both Apriori and Pattern growth) adopt an 

iterative pattern mining strategy where each iteration can be divided into two 

phases: (i) candidate generation, and (ii) support computation, Generally, research 

on FSM focuses on these two phases using a variety of techniques. Since it is 

harder to address subgraph isomorphism detection, more research effort is 

directed at how to efficiently generate subgraph candidates. Because subtree 

isomorphism detection can be solved in 𝑂 (
𝑘1.5

log 𝑘
 𝑛) time, the computational 

complexity is reduced within the context of FSM.(43) 

Figure II-23 highlight the basic framework adopted by the most FSM 

algorithms:  

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒕_𝑺𝒖𝒃𝒈𝒓𝒂𝒑𝒉_𝑴𝒊𝒏𝒊𝒏𝒈 (𝑮,𝒎𝒊𝒏𝒔𝒖𝒑) 

//𝑮 𝒊𝒔 𝒅𝒂𝒕𝒂𝒃𝒂𝒔𝒆 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒈𝒓𝒂𝒑𝒉𝒔 𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝒔. 

𝟎 –  𝑴𝒊𝒏𝒊𝒏𝒈 𝒔𝒕𝒂𝒓𝒕𝒔 𝒘𝒊𝒕𝒉 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒕 𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝒐𝒇 𝒔𝒊𝒛𝒆 𝟏 𝒊. 𝒆. 𝑭𝟏 (𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒆 𝑭𝟏) 

𝟏 –  𝒘𝒉𝒊𝒍𝒆  𝑭𝒌   ≠  ∅ 

𝟐 –         𝑪𝒌+𝟏𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆_𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏(𝑭𝒌  , 𝑮) 

𝟐 –          𝒇𝒐𝒓𝒂𝒍𝒍 𝒄 𝒊𝒏 𝑪𝒌+𝟏 

𝟑 –                 𝒊𝒇 𝒊𝒔𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎_𝒄𝒉𝒆𝒄𝒌𝒊𝒏𝒈(𝒄) = 𝒕𝒓𝒖𝒆 

𝟒 –                   𝒔𝒖𝒑𝒑𝒐𝒓𝒕_𝒄𝒐𝒖𝒏𝒕𝒊𝒏𝒈(𝒄, 𝑮) 

𝟓 –                  𝒊𝒇 𝒄. 𝒔𝒖𝒑 >=  𝒎𝒊𝒏𝒔𝒖𝒑 
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𝟔 –                         𝑭𝒌+𝟏 = 𝑭𝒌+𝟏⋃𝒄 

𝟕 –   𝒌 = 𝒌 + 𝟏 

𝟖 –    𝒓𝒆𝒕𝒖𝒓𝒏 𝒔𝒆𝒕 𝒐𝒇 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒕 𝒑𝒂𝒕𝒕𝒓𝒏𝒔 ⋃ 𝑭𝒊
𝒊=𝟏,….𝒌−𝟏

 

Figure II-23 : Baseline algorithm for FSM. 

Before presenting a survey of the most FSM algorithms in literature, essential 

techniques used to support their operations are first presented, such techniques 

allow achieving: 

01 – Efficient candidate generation. 

02 – Isomorphism checking.  

03 – Support computation.  

representation of graphs will first be considered. The aim here is to represent 

graphs in such a manner that subgraphs can be enumerated efficiently so as to 

facilitate the desired FSM and facilitate isomorphism checking on subgraphs. 

II.13.1 Canonical Representations:  

The simplest mechanism whereby a graph structure can be represented is by 

employing an adjacency matrix or adjacency list. 

 an adjacency matrix is a square matrix used to represent a finite graph. The 

elements of the matrix indicate whether pairs of vertices are adjacent or not in the 

graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-

matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix 

is symmetric. 

an adjacency list is a collection of unordered lists used to represent a 

finite graph. Each list describes the set of neighbors of a vertex in the graph, There 

are many variations of this basic idea, differing in the details of how they 

implement the association between vertices and collections, in how they 

implement the collections, in whether they include both vertices and edges or only 

vertices as first class objects, and in what kinds of objects are used to represent 

https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/(0,1)-matrix
https://en.wikipedia.org/wiki/(0,1)-matrix
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
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the vertices and edges. Figure II-12 present a simple graph G along with its 

corresponding adjacency matrix. 

(

 
 
 
 
 
 
 

𝑎 1 0 1 0 0 0 1 0 0
1 𝑏 0 0 1 0 0 0 0 0
0 0 𝑐 0 1 1 0 0 0 0
1 0 0 𝑑 0 1 1 0 0 0
0 1 1 0 𝑒 1 0 0 0 0
0 0 1 1 1 𝑓 1 1 0 1
0 0 0 1 0 1 𝑔 0 0 0
1 0 0 0 0 1 0 ℎ 1 0
0 0 0 0 0 0 0 1 𝑘 0
0 0 0 0 0 1 0 0 0 𝑤)

 
 
 
 
 
 
 

 

 

Throughout this section Graph G will be used to illustrate the canonical 

representations discussed, for ease of illustration, all edge labels are assumed to 

be the same and are represented by “1”. 

The use of the adjacency matrices and adjacency lists, although 

straightforward, it does not lend itself to isomorphism detection, because a graph 

can be represented in many different ways depending on how the vertexes (and 

edges) are enumerated. With respect to isomorphism testing it is therefore 

desirable to adopt a consistent labelling strategy that ensures that any two 

identical graphs are labelled in the same way regardless of the order in which 

vertexes and edges are presented (i.e. a canonical labelling strategy). 

A canonical labelling strategy defines a unique code for a given graph, 

Canonical labelling facilitates isomorphism checking because it ensures that if a 

pair of graphs are isomorphic, then their canonical labellings will be identical. One 

simple way of generating a canonical labelling is to flatten the associated 

adjacency matrix by concatenating rows or columns to produce a code comprising 

a list of integers with a minimum (or maximum) lexicographical ordering imposed. 

To further reduce the computation resulting from the permutations of the matrix, 

canonical labellings are usually compressed, using what is known as a vertex 

 (a) Graph G with preorder subscript     (b) G’s adjacency matrix  

Figure II-24 : A simple graph G with its corresponding adjacency matrix. 
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invariant scheme (61), that allows the content of an adjacency matrix to be 

partitioned according to the vertex labels. Various canonical labelling schemes 

have been proposed, some of the more significant are described in this subsection. 

 Minimum DFS Code (M-DFS): 

There are a number of variants of DFS encodings, but essentially each vertex 

is given a unique identifier generated from a DFS traversal of a graph (DFS 

subscripting). Each constituent edge of the graph in the DFS code is then 

represented by a 5-tuple: (𝑖, 𝑗, 𝑙𝑖  , 𝑙𝑒  , 𝑙𝑗  ) where 𝑖 and 𝑗 are the vertex identifiers,𝑙𝑖 

and 𝑙𝑗 are the labels for the corresponding vertexes, and 𝑙𝑒 is the label for the edge 

connecting the vertexes. Based on the DFS lexicographic order, the M-DFSC of a 

graph 𝑔 can be defined as the canonical labelling of 𝑔 (17). The DFS codes for the 

left-most branch and the right-most branch of the example graph if figure II-24 (a) 

are :  {(0, 1, a, 1, b), (1, 2, b, 1, e), (2, 3, e, 1, f), (3, 4, f, 1, c), (4, 2, c, 1, e)} and 

{(0, 9, a, 1, d), (9, 10, d, 1, f), (10, 11, f, 1, g), (11, 9, g, 1, d)} respectively. 

The algorithm FSM-H under study utilize M-DFS code as its coding scheme to 

issue isomorphism checking on candidate patterns.  

 Canonical Adjacency Matrix (CAM): 

Given an adjacency matrix 𝑀 of a graph 𝑔, an encoding of 𝑀 can be obtained 

by the sequence obtained from concatenating the lower (or upper) triangular 

entries of 𝑀, including entries on the diagonal. Since different permutations of the 

set of vertexes correspond to different adjacency matrices, the canonical (CAM) 

form of 𝑔 is defined as the maximal (or minimal) encoding. The adjacency matrix 

from which the canonical form is generated defines the Canonical Adjacency Matrix 

or CAM (62–65). The encoding for the example graph given in Figure II-24 (a), 

represented by the matrix in Figure II-24 (b) is thus 

{𝑎1𝑏00𝑐100𝑑0110𝑒00111𝑓000101𝑔1000010ℎ00000001𝑘000001000𝑤}. 

The above two schemes are applicable to any simple undirected graph. 

However, it is easier to define a canonical labelling for trees than graphs because 

trees have an inherent structure associated with them. There also exist more 

specific schemes that are uniquely focused on trees. Among these, DFS-LS and 



CHAPTER 02                                          GRAPH THEORY AND FREQUENT SUBGRAPH MINING 

 

79 

 

DLS are directed at rooted ordered trees, DFS-LS for example adds all the labels 

of vertexes along the branch during a DFS traversal of the tree, to a string S, and 

whenever backtracking occurs a unique symbol, such as “−1” or “$” or “/”, is added 

to 𝑆. others canonical coding schemes include BFCS and DFCS which are used for 

rooted unordered trees.(43) 

II.13.2 Candidate Generation:  

As noted earlier in this chapter, candidate generation is an essential phase in 

FSM. How to systematically generate candidate subgraphs without redundancy 

(i.e. each subgraph should be generated only once) is a key issue. Many FSM 

algorithms can be characterized by the strategy adopted for candidate generation. 

The current methods for enumerating all the subgraphs might be classified 

into two categories: the join operation adopted by FSG and AGM and the extension 

operation. The major concerns for the join operation are that a single join might 

produce multiple candidates and that a candidate might be redundantly proposed 

by many join operations. The concern for the extension operation is to restrict the 

nodes that a newly introduced edge may attach to. 

 A number of the most significant are briefly described below. Since a 

significant proportion of strategies employed in FTM is interwoven with those 

employed in FGM, no clear distinction can be made between candidate generation 

strategies in terms of FTM (trees) and FGM (graphs), i.e. strategies initially 

proposed for (say) FGM are equally applicable to FTM, and vice versa.  

 Level-Wise Join:  

The level-wise join strategy was introduced by Kuramochi & Karypis (64). 

Basically, 𝑎 (𝑘 +  1) subgraph6 candidate is generated by combining two frequent 

𝑘 subgraphs which share the same (𝑘 −  1) subgraph. This common (𝑘 −  1) 

subgraph is referred to as a core for these two frequent 𝑘 subgraphs. The main 

issue concerning this strategy is that one 𝑘 subgraph can have at most 𝑘 different 

(𝑘 −  1) subgraphs and the joining operation may generate many redundant 

candidates. this issue was addressed by limiting the (𝑘 −  1) subgraphs to the two 

(𝑘 −  1) subgraphs with the smallest and the second smallest canonical labels. By 
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carrying, out this adapted join operation, the number of duplicate candidates 

generated was significantly reduced. Other algorithms that adopted this strategy, 

and its variants, are AGM (18), DPMine (66,67), and HSISGRAM (68). 

 Rightmost path Extension:  

If a frequent graph is extended in every possible position, it may generate a 

large number of duplicate graphs, therefore a number of existing FSM algorithms 

impose restriction on the extension nodes of the parent pattern so that redundant 

generation paths can be reduced. One such restriction that is used in the popular 

gSpan algorithm (will be defined later) is called right most path generation or 

extension. The RMP extension method generates (𝑘 +  1) − 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 from 

frequent 𝑘 − 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 by adding vertexes only to the rightmost path of the tree 

Simply put, edge adjoining is done only with vertices on the right-most path. 

In Figure II-25. (a) “RMB” denotes the rightmost branch, which is the path 

from the root to the rightmost leaf (𝑘 −  1), and a new vertex 𝑘 is added by 

attaching it to any vertexes along the RMB.  

 

Figure II-25 : An illustration of the right most expansion. 

 Extension and join:  

The extension and join strategy was first proposed by Huan (69), and later 

used by Chi (70). It employed a BFCS representation; whereby a leaf at the bottom 

level of a BFCF tree is defined as a “leg”. For a node 𝑉𝑛 in an enumeration tree, if 

the height of the BFCF tree corresponding to 𝑉𝑛 is assumed to be ℎ, all children of 

𝑉𝑛 can be obtained by either of the following two operations: 
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(a) Extension Operation: Adding a new leg at the bottom level of the BFCF 

tree yields a new BFCF with height ℎ +  1. 

(b) Join Operation: joining 𝑉𝑛 and one of its sibling yields a new BFCF with 

height ℎ. 

The above mentioned candidate generation strategies are directed at FGM 

problems, other strategies that are directed to FTM, may include Equivalence 

class based extension and right-and-left tree join.  

Along with M-DFS code for canonical labeling of graphs and isomorphism 

checking, the algorithm FSM-H, subject of the study employ also the right most 

path (RMP) extension as its mechanism for reducing redundant generation paths 

in candidate generation step. 

II.13.3 Support Computing:  

Several methods are used for graph counting. Some frequent subgraph mining 

algorithms use transaction identifier (TID) lists for frequency counting. Each 

frequent subgraph has a list of transaction identifiers which support it. For 

computing frequency of a 𝑘 subgraph, the intersection of the TID lists of (𝑘 − 1) 

subgraphs is computed. Embedding list also can be used for the purpose of 

frequency counting.(13) 

II.14 Frequent subgraph mining algorithms:  

As was indicated in Figure II-8, FGM algorithms find substantial application 

in chemical informatics and biological network analysis. There are a variety of 

FGM algorithms reported in the literature. As in the case of FTM, candidate 

generation and support counting are key issues. Since subgraph isomorphism 

detection is known to be 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, a significant amount of research work has 

been directed at various approaches for effective candidate generation. The 

mechanism employed for candidate generation is the most significant 

distinguishing feature of such algorithms. An exploration of current well-known 

frequent subgraph mining algorithms is provided in this section.(43) 

There exist many algorithms for solving the in memory version of frequent 

subgraph mining task, most notable among them are AGM(18), FSG(64), 
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gSpan(17), Gaston(71) and DMTL(72). These methods assume that the dataset 

is small and the mining task finishes in a reasonable amount of time using an in-

memory method. To consider the large data scenario, a few traditional database 

based graph mining algorithms, such as, DB-Subdue(73), DB-FSG(74) and OO-

FSG(75) are also proposed. There also exist a couple of works that mine subgraphs 

that are frequent considering the induced occurrences of those subgraphs in a 

single large graph(76,77). Wu et al. developed a distributed subgraph mining 

algorithm(76) which requires the graph diameter and the number of vertices for 

pattern matching. Liu et al. proposed an algorithm MRPF(77) that finds motifs in 

prescription compatibility network. Both of these latter two works, consider 

mining from a single large graph but FSM-H mines from a large set of moderate 

size graphs that can fit in a memory. 

 For large-scale graph mining tasks, researchers considered shared memory 

parallel algorithms for frequent subgraph mining. Cook et al. presented a parallel 

version of their frequent subgraph mining algorithm Subdue(78). Wang et al. 

developed a parallel toolkit(79) for their MotifMiner(80) algorithm. Meinl et al. 

created a software named Parmol(81) which includes parallel implementation of 

Mofa, gSpan, FFSG and Gaston. ParSeMis(82) is another such tool that provides 

parallel implementation of gSpan algorithm. To deal with the scalability problem 

caused by the size of input graphs, there are couple of notable works, 

PartMiner(83) and PartGraphMining(84) , which are based on the idea of 

partitioning the graph data.(85) 

In addition to being classified as in memory, database-based, shared memory 

parallel algorithms, FSM algorithms could be further classified taking into 

account different considerations:  

II.14.1 Classification based on algorithmic approaches:  

It is widely accepted that FSM techniques can be divided into two categories: 

(i) Apriori-based approaches, and (ii) pattern growth-based approach. 

Table II-1 and Table II-2 breaks FSM algorithms as being Apriori or pattern 

growth based algorithms respectively: 
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Table II-3 : Classification of FSM algorithms based on Apriori based approach. 

No Algorithm Input 

type 

Graph 

repre- 

sentation 

Candidate 

generation 

Frequency 

counting 

Nature of 

output 

Limitatio ns 

1. FARMER Set of 
graphs 

Trie 
structure 

Level-wise 
search ILP 

Trie data 
structure 

Frequent 
subgraphs 

Inefficient 

2. FSG Set of 

graphs 

Adjacency 

list 

One edge 

extension 

Transaction 

identifier 
(TID) lists 

Frequent 

connected 
subgraphs 

Np- complete 

3. HSIGRAM Single 

large 
graph 

Adjacency 

matrix 

Iterative 

merging 

Maximal 

indepen- 
dent set 

Frequent 

subgraphs 

 

Ineffecien t 

4. GREW Single 

large 

graph 

Sparse 

graph 

representati 

on. 

Iterative 

merging 

Maximal 

indepen- 

dent set 

Maximal 

frequent 

subgraphs 

Misses many 

interesting 

patterns 

5. FFSM  

Set of 

graphs 

Adjacency 

matrix 

Merging 

and 

extension 

Sub- 

optimal 

canonical 

adjacency 
matrix tree 

Frequent 

subgraphs 

Np- complete 

6. ISG Set of 

graphs 
Edge triplet Edgetriplet 

extension 
TID lists Maximal 

Frequent 
subgraphs 

Incomplet e set 

of 
Graphs 

7. SPIN Set of 

graphs 

Adjacency 

matrix 

Join 

Operation 

Canonical 

Spanning 

Tree 

Maximal 

frequent 

subgraphs 

Non maximal 

graphs can 

also be found 

but needs an 

entire 
database scan 

8. Dynamic 
GREW 

Dynami 
c graphs 

Sparse 

graph 

representati 

on. 

Iterative 
merging 

Suffix trees Dynamic 

patterns in 

frequent 

subgraphs 
. 

Extra 

overhead to 

identify 

dynamic 
patterns 

9. AGM Graph 

databas 
e 

Adjacency 

matrix 

Vertex 

extension 

Canonical 

labeling 

Frequent 

subgraphs 

 

10. MUSE Uncerta 

in set of 

graphs 

Adjaceny 

Matrix 
Disjunctive 

normal 

forms 

DFS coding 

scheme 

Frequent 

subgraphs 
Frequent 

subgraphs are 

not 
exact. 

 

Table II-4 : Classification of FSM algorithms based of Pattern Growth approach. 

SNo Algorithm Input 

type 

Graph 

represen- 

tation 

Subgraph 

generation 

Frequency 

counting 

Nature of 

output 

Limita- tions 

1. SUBDUE Single 

large 

graph 

Adjacenc 

y matrix 

Level-wise 

search 

Minimum 

description 

code length 

Complete 

set of 

frequent 
subgraphs 

Extremely 

small no. of 

patterns 
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2. GSpan Set of 

graphs 

Adjacenc 

y list 

Rightmost 

extension 

Depth first 

search (DFS) 

lexicographic 
order 

frequent 

graphs 

Not scalable 

3. Close 

Graph 

Set of 

graphs 

Adjacenc 

y list 

Rightmost 

extension 

DFS 
lexicographic 

order 

Closed 

Connected 

frequent 

graphs 

Failure 

detection 

takes lot of 

time 
overhead 

4. Gaston Set of 

graphs 

Hash 

table 

Extension Embedding 

lists 

Maximal 

frequent 

sugraphs 

Interesting 

patterns 

may be lost. 

5. TSP Set of 

graphs 

Adjacenc 

y list 

Extension TSP tree Closed 

Temporal 

frequent 

sub 

graphs 

Extra 

overhead to 

check whether 

temporal 

patterns are 

closed 

6. MOFA Set of 

graphs 

Adjacenc 

y list 

Rightmost 

extension 

DFS 
lexicographic 

order 

All 

frequent 

subgraphs 

Frequent 

graphs 

generated 

may not be 

exactly 
frequent. 

7. RP-FP Set of 
graphs 

Adjacenc 
y list 

Rightmost 
extension 

DFS 
lexicographic 

order 

Represen- 

tative 

graphs 

Time for 

summari- 

zing the 

patterns is 

more than 

that for 
mining 

8. RP-GD Set of 

graphs 

Adjacenc 

y list 

Rightmost 

extension 

DFS 
lexicographic 

order 

Represen- 

tative 

graphs 

Time for 

summari- 

zing the 

patterns is 

more than 

that for 

mining 

9. JPMiner Set of 

graphs 

Adjacenc 

y list 

Rightmost 

extension 

DFS 
lexicographic 

order 

Frequent 

jump 

patterns 

Sometimes 

much smaller 

set 

of jump 

patterns. 

10. MSPAN Set of 

graphs 

Adjacenc 

y list 

Rightmost 

extension 
DFS 

lexicographic 

order 

Frequent 

subgraphs 
 

 

II.14.2 Classification based on Search strategy:  

There are essentially two basic search strategies employed for finding out 

frequent subgraphs: the breadth first search (BFS) strategy and the depth first 

search (DFS) strategy. 
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II.14.3 Classification based on the nature of input:  

The algorithms are of two types based on the exactness of the input they take. 

The first type takes in an exact graph sets as input, whereas the second type takes 

an uncertain set of graphs as input. Another possibility is based on the type of the 

graph. The first type takes in a single large graph as input, whereas the second 

type takes a set of small graphs as input. The third correctness of the graph data 

where it can be accurate or uncertain. 

II.14.4 Classification based on the completeness of the output:  

Based on the set of the frequent subgraphs discovered, the algorithms are of 

two types. The first type returns the complete set of frequent subgraphs, whereas 

the second type returns a partial set of frequent subgraphs.(86) 

Figure gives a diagram of all FSM algorithms with respect to the 

classification mentioned above:  
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Figure II-26 : Classification of FSM Algorithms.(86)
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Algorithms
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approches
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PAN

Search 
strategy

Level wise 
search

SUBDUE,FAR
MER,FSG,AG
M,HSISGRA

M

Depth first 
search

All 
others

Input

Nature of 
Graphs

Static

All 
others

Dynamic

Dynamic 
Grew, TSP

No of 
Graphs

Single 
large 
graph

HSISGR
AM,GR
EW,SU
BDUE

Set of 
small 

graphs

All 
others

Correctness of 
Graphs

Exact 
graphs

All 
others

Uncertain 
graphs

MUSE

Output

Complete set

All 
others

Partial 
set

Closepath,
RP-FP,RP-
GD,TSP,JP
MINER,FS
G,GREW,S
PIN,Dyna

mic GREW
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In the subsequent paragraphs we will be discussing some of most important of 

the aforementioned algorithms, to aid the discussion, the algorithms are 

categorized according to three criteria: (i) the completeness of the search (exact 

search or inexact search), (ii) the type of input (transactions graphs or one single 

graph), and (iii) the search strategy (BFS or DFS). 

II.15 Inexact FSM:  

Inexact search based FSM algorithms use an approximate measure to compare 

the similarity of two graphs, i.e. any two subgraphs are not required to be entirely 

identical to contribute to the support count, instead a subgraph may contribute to 

the support count for a candidate subgraph if it is in some sense similar to the 

candidate. Inexact search is of course not guaranteed to find all frequent 

subgraphs, but the nature of the approximate graph comparison often leads to 

computational efficiency gains. 

 SUBDUE(87): There are only a few examples of inexact frequent subgraph 

mining algorithms in the literature. However, one frequently quoted example is 

the SUBDUE algorithm, SUBDUE uses the minimum description length principle 

to compress the graph data; and a heuristic beam search method, that makes use 

of background knowledge, to narrow down the search space. Although the 

application of SUBDUE shows some promising results in domains such as image 

analysis and CAD circuit analysis, the scalability of the algorithm is an issue, i.e. 

the run time does not increase linearly with the size of the input graph. 

Furthermore, SUBDUE tends to discover only a small number of patterns. 

 GREW(88): Another inexact search based FGM algorithm is GREW 

However, GREW is directed at finding connected subgraphs which have many 

vertex-disjoint embeddings (Two embeddings in a graph 𝐺 are vertex-disjoint, if 

they do not share any vertexes in 𝐺.), in single large graphs. GREW uses a 

heuristic based approach that is claimed to be scalable, because it employs ideas 

of edge contraction and graph rewriting. GREW deliberately underestimates the 

frequency of each discovered subgraph in an attempt to reduce the search space. 

Experiments on synthetic data sets showed that GREW significantly 
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outperformed SUBDUE with respect to: runtime, number of patterns found, and 

size of patterns found. 

II.16 Exact FSM:  

Exact FSM algorithms are much more common than inexact search based 

FSM algorithms. They can be applied in the context of graph transaction based 

mining or single graph based mining. A fundamental feature for exact search 

based algorithms is that the mining is complete, i.e. the mining algorithms are 

guaranteed to find all frequent subgraphs in the input data. However complete 

mining algorithms perform efficiently only on sparse graphs with a large amount 

of labels for vertexes and edges. Due to this completeness restriction, these 

algorithms undertake extensive subgraph isomorphism comparison, either 

explicitly or implicitly, resulting in a significant computational overhead. 

We will be considering here only graph transaction based FSM. 

With respect to graph transaction mining, the algorithms can be divided into 

two groups: BFS and DFS, according to the traversing strategy adopted. BFS tends 

to be more efficient in that it allows for the pruning of infrequent subgraphs (at 

the cost of high I/O and memory usage) at an early stage in the FSM process, 

whereas DFS requires less memory usage (in exchange for less efficient pruning). 

We will consider the BFS algorithms first. 

As in the case of Association Rule Mining algorithms, BFS based FSM 

algorithms utilize the DCP, i.e. a (𝑘 +  1) subgraph cannot be frequent if its 

immediate parent 𝑘 subgraph is not frequent. Using BFS the complete set of 𝑘 

candidates is processed before moving on to the (𝑘 +  1) candidates, where 𝑘 refers 

to the expansion unit for growing the candidates, which can be expressed in terms 

of vertexes, edges, or disjoint paths. 

Four well-established exact FSM algorithms are itemized below: 

 AGM(18) : AGM is a well-established algorithm used to identify frequent 

induced subgraphs. AGM uses an adjacency matrix to represent graphs and a 

level-wise search to discover frequent subgraphs. AGM assumes that all vertexes 

in a graph are distinct. AGM discovers not only connected subgraphs, but also 
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unconnected subgraphs with several isolated graph components. A more efficient 

version of AGM, called AcGM, has also been developed to mine only frequent 

connected subgraphs. 

 FSG(64): is directed at finding all frequent connected subgraphs. FSG uses 

the BFS strategy to grow candidates whereby pairs of identified frequent k 

subgraphs are joined to generate (𝑘 +  1) subgraphs. FSG uses a canonical 

labelling method for graph comparison and computes the support of the patterns 

using a vertical transactionlist data representation, which has been used 

extensively in Frequent tree mining algorithms (FTM). Experiments show that 

FSG does not perform well when graphs contain many vertexes and edges that 

have identical labels because the join operation used by FSG allows multiple 

automorphism of single or multiple cores (In the candidate generation phase, a 

core is a common (𝑘 −  1) subgraph shared by two frequent 𝑘 subgraphs. Two 

frequent 𝑘 subgraphs are eligible for joining only if they contain the same core). 

The FSG algorithm is directed at graph databases consisting of a two dimensional 

arrangement of vertexes and edges in each graph (sometimes referred to as 

topological graphs, same as what we are considering). However, in chemical 

compound analysis users are often interested in graphs that have coordinates 

associated with the vertexes in two-or three-dimensional space (sometimes 

referred to as geometric graphs). gFSG extends the FSG algorithm to discover 

frequent geometric subgraphs with some degree of tolerance among geometric 

graph transactions. The extracted geometric subgraphs are rotation, scaling and 

translation invariant. gFSG shares the approach of candidate generation with 

FSG. 

FSM algorithms that adopt a DFS strategy tend to need less memory because 

they traverse the lattice of all possible frequent subgraphs in a DFS manner. the 

well-known among them algorithms are listed below: 

 MoFa(89):  is directed at mining frequent connected subgraphs describing 

molecules. The algorithm stores the embedding list of previously found subgraphs 

and the extension operation is restricted only to these embeddings. MoFa also uses 

structural pruning and background knowledge to reduce support computation. 
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However, MoFa still generates many duplicates, resulting in unnecessary support 

computation. 

 gSpan(17): uses a canonical representation, M-DFSC, to uniquely 

represent each subgraph. The algorithm uses DFS lexicographic ordering to 

construct a tree-like lattice over all possible patterns, resulting in a hierarchical 

search space called a DFS code tree. Each node of this search tree represents a 

DFS code. The (𝑘 +  1) − 𝑡ℎ level of the tree has nodes which contain DFS codes 

for 𝑘 subgraphs. The 𝑘 subgraphs are generated by one edge expansion from the 

𝑘 − 𝑡ℎ level of the tree. This search tree is traversed in a DFS manner and all 

subgraphs with non-minimal DFS codes are pruned so that redundant candidate 

generations are avoided. Instead of keeping the embedding list, gSpan only 

preserves the transaction list for each discovered pattern; subgraph isomorphism 

detection only operates on the graphs within the list. In comparison with 

embedding list based algorithms, the gSpan algorithm saves on memory usage. 

Experiments show that gSpan outperforms FSG by an order of magnitude. gSpan 

is arguably the most frequently cited FSM algorithm. 

 GASTON(71): integrates frequent path, subtree, and subgraph mining into 

one algorithm, due to the observation that most frequent sub-structures in 

molecular databases are free trees. The algorithm provided a solution by splitting 

up the frequent subgraph mining process into path mining, then subtree mining, 

and finally subgraph mining. Consequently, the subgraph mining is only invoked 

when needed. Thus, GASTON operates best when the graphs are mainly paths or 

trees, because the more expensive subgraph isomorphism testing is only 

encountered in the subgraph mining phase. GASTON records the embedding list 

so as to grow only patterns that actually appear; thus saving on unnecessary 

isomorphism detection. Experiments show that GASTON is at a competitive level 

with a wide range of other FGM algorithms.(43) 

II.17 Discussion:  

A view of the “state of the art” of current FSM, referencing especially those 

algorithms most frequently referred to in the literature, has been presented. The 

most computationally expensive aspects of FSM algorithms are candidate 
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generation and support computation; with the latter being the most 

computationally expensive.  

It is trivial to mention that, because of the diversity of FSM algorithms, it is 

difficult to enumerate the strong and weak points of these various algorithms. 

Although there are abundant research publications on FSM applications many 

important issues remain to be addressed: 

Firstly, can we discover a compact and meaningful set of frequent subgraphs 

instead of a complete set of frequent subgraphs? Although not mentioned 

throughout the chapter, a lot of research effort has been directed at reducing the 

resultant set of frequent subgraphs; for example, the use of maximal frequent 

subgraphs, closed frequent subgraphs, approximate frequent subgraphs and 

discriminative frequent subgraphs. However, there is no clear understanding of 

what kind of frequent subgraphs are the most compact and representative for any 

given application. 

Secondly, can we achieve better classification using frequent subgraph based 

classifiers than other approaches? Can we integrate feature selection techniques 

deeply into the frequent subgraph mining process and directly identify the most 

discriminative subgraphs which are effective for classification? 

Thirdly, as many researchers have noted, exact frequent subgraphs are not 

very helpful with respect to many real applications. Can we therefore devise more 

efficient algorithms to generate approximate frequent subgraphs? Little work has been 

conducted in the context of approximate frequent subgraphs mining with the 

notable exception of the well-known SUBDUE algorithm. 

Finally, in domains like: document image classification, work-flow mining, 

social network mining, single graph based mining, and so on; there is still a lot of 

work that can be done to improve the mining task. There is always a trade-off 

between the combinatorial complexity of FSM algorithms and the utility of the 

frequent subgraphs discovered by them. 
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Key Points – Chapter 02 : 

 

 We introduced the chapter by defining graph mining.  

 We gave some preliminary notions of graphs and graph theory. 

 We focused in this chapter on Frequent Subgraph Mining (FSM). 

 We gave the major operations that an FSM algorithm has to perform in 

order to find subgraphs, for instance candidate generation, isomorphism 

checking and support counting and presented the techniques associated 

to perform each of them. 

 We presented the FSM algorithmic approaches, Apriori and Pattern 

Growth. 

 We defined some FSM algorithms found in the literature and provided a 

classification for them with respect to various considerations. 
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III. Chapter 03 :  

Hadoop and MapReduce 

Context:  

Apache Hadoop is a widely used open source distributed computing framework 

that is employed to efficiently process large volumes of data using large clusters 

of cheap or commodity hardware. In this chapter, we will present the Hadoop 

ecosystem, with a more focus on its core component being the MapReuce engine 

and the Hadoop distributed file system (HDFS), we will consider also some 

commercial distribution of Hadoop. 

 

III.1 Presentation of Apache Hadoop: 

Hadoop is a popular open source platform that is based on distributed 

computing environment, was originally built by a Yahoo! engineer named Doug 

Cutting and is now an open source project managed by the Apache Software 

Foundation, Hadoop is a fundamental building block in our desire to capture and 

process big data. Hadoop is designed to parallelize data processing across 

computing nodes to speed computations and hide latency. At its core, Hadoop has 

two primary components: 

 Hadoop Distributed File System: A reliable, high-bandwidth, low-cost, 

data storage cluster that facilitates the management of related files across 

machines. 

 MapReduce Engine: A high-performance parallel/distributed data 

processing implementation of the MapReduce algorithm. 

Hadoop is designed to process huge amounts of structured and unstructured 

data (terabytes to petabytes) and is implemented on racks of commodity servers 

as a Hadoop cluster. Servers can be added or removed from the cluster dynamically 

because Hadoop is designed to be “self-healing.” In other words, Hadoop is able to 
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detect changes, including failures, and adjust to those changes and continue to 

operate without interruption.(7) 

 

Figure III-1 : The Hadoop Kernel. 

III.2 The motivation for Hadoop: 

Most of traditional technologies encountered difficulties while analyzing big 

data due to its volume velocity and variety as  a result new technologies are 

created to address these difficulties among these technologies Hadoop is most 

popular name identified with big data Hadoop was developed as a practical 

solution to allow companies to manage and process huge volumes of data easily 

Hadoop manages different types of bi data whether structured or unstructured 

encoded or formatted this makes it useful for the decision making process new 

nodes or single commodity Hardware server computers can be easily added in 

system when required without altering the data formats how data is loaded how 

programs are written or modifying the existing applications Hadoop is an open 

source platform and runs on industry standard hardware it is also fault tolerant 

even if node gets lost or goes out of service the system automatically reallocates 

work to another location of the data and continues processing Hadoop s  

competencies are getting more and more real-time it generates cost benefits  by 

reduction in the cost per terabyte of storage organizations are synchronizing  

Hadoop and cloud computing to manage big data thus Hadoop has become a 

fundamental technology to the success of big data . 
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III.3 History of Apache Hadoop: 

big data is a word often used to promote the importance of the ever-growing 

data and the technologies applied to analyze this data. Big and small companies 

now understand the importance of data and are adding loggers to their operations 

with an intention to generate more data every day. This has given rise to a very 

important problem—storage and efficient retrieval of data for analysis. With the 

data growing at such a rapid rate, traditional tools for storage and analysis fall 

short. Though these days the cost per byte has reduced considerably and the 

ability to store more data has increased, the disk transfer rate has remained the 

same. This has been a bottleneck for processing large volumes of data. Data in 

many organizations have reached petabytes and is continuing to grow. Several 

companies have been working to solve this problem and have come out with a few 

commercial offerings that leverage the power of distributed computing. In this 

solution, multiple computers work together (a cluster) to store and process large 

volumes of data in parallel, thus making the analysis of large volumes of data 

possible. Google, the Internet search engine giant, ran into issues when their data, 

acquired by crawling the Web, started growing to such large volumes that it was 

getting increasingly impossible to process. They had to find a way to solve this 

problem and this led to the creation of Google File System (GFS) and MapReduce. 

The GFS or GoogleFS is a file system created by Google that enables them to 

store their large amount of data easily across multiple nodes in a cluster. Once 

stored, they use MapReduce, a programming model developed by Google to process 

(or query) the data stored in GFS efficiently. The MapReduce programming model 

implements a parallel, distributed algorithm on the cluster, where the processing 

goes to the location where data resides, making it faster to generate results rather 

than wait for the data to be moved to the processing, which could be a very time 

consuming activity. Google found tremendous success using this architecture and 

released white papers for GFS in 2003 and MapReduce in 2004, Around 2002, 

Doug Cutting and Mike Cafarella were working on Nutch, an open source web 

search engine, and faced problems of scalability when trying to store billions of 

web pages that were crawled everyday by Nutch. In 2004, the Nutch team 
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discovered that the GFS architecture was the solution to their problem and started 

working on an implementation based on the GFS white paper. They called them 

filesystem Nutch Distributed File System (NDFS). 

 In 2005, they also implemented MapReduce for NDFS based on Google's 

MapReduce white paper. In 2006, the Nutch team realized that their 

implementations, NDFS and MapReduce, could be applied to more areas and could 

solve the problems of large data volume processing. This led to the formation of a 

project called Hadoop. Under Hadoop, NDFS was renamed to Hadoop Distributed 

File System (HDFS). After Doug Cutting joined Yahoo! in 2006, Hadoop received 

lot of attention within Yahoo!, and Hadoop became a very important system 

running successfully on top of a very large cluster (around 1000 nodes). In 2008, 

Hadoop became one of Apache's top-level projects.(90)  

 

Figure III-2 : Brief History of Hadoop. 

III.4 Hadoop Components and Ecosystem: 

Hadoop is the most comprehensive collection of tools and technologies 

available today it is often compared to ecosystem  just as in an ecosystem Hadoop 

is a cohesive system of various tools and techniques for handling big data 

challenges moreover a Hadoop develops and deploys Big data solutions with 

maximum use of  available resources with minimum wastage so what are the 
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different components of the Hadoop ecosystem the core components of the Hadoop 

ecosystem are Hadoop distributed file system HDFS and Hadoop Mapreduce these 

components provide the basic structure and services needed to support the key 

requirements of Big data solutions. 

 However just these two tools are not enough to manage Big data. The Hadoop 

ecosystem therefore provides a collection of tools and techniques for the complete 

development and deployment of Big data solutions, this ecosystem provides a 

common technological framework for the different stakeholders such as 

developers, database administrators and network managers who build Big data 

solutions. the additional tools and technologies included in the Hadoop ecosystem 

are HBase ,Hive, Pig,Sqcoop, Zookeekper ,Flume , Spark and Oozie,as we now 

understand Hadoop is not a single solution but a platform with a collection of 

applications and technique built on its foundation. 

The tools and technologies of the Hadoop ecosystem provide the components 

needed to build and manage purpose-driven big data application for the real world 

let us take a look at these tools and technologies of the Hadoop ecosystem: 

III.4.1 Apache HBase:   

HBase is a low-latency, distributed (no relational) database built on top of 

HDFS. Modeled after Google’s Bigtable, HBase presents a flexible data model with 

scale-out properties and a very simple API. Data in HBase is stored in a semi 

columnar format partitioned by rows into regions. It’s not uncommon for a single 

table in HBase to be well into the hundreds of terabytes or in some cases petabytes. 

Over the past few years, HBase has gained a massive following based on some 

very public deployments such as Facebook’s Messages platform. Today, HBase is 

used to serve huge amounts of data to real-time systems in major production 

deployments. 

III.4.2 Apache Hive: 

Hive creates a relational database−style abstraction that allows developers to 

write a dialect of SQL, which in turn is executed as one or more MapReduce jobs 

on the cluster. Developers, analysts, and existing third-party packages already 
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know and speak SQL (Hive’s dialect of SQL is called HiveQL and implements only 

a subset of any of the common standards). Hive takes advantage of this and 

provides a quick way to reduce the learning curve to adopting Hadoop and writing 

MapReduce jobs. For this reason, Hive is by far one of the most popular Hadoop 

ecosystem projects. Hive works by defining a table-like schema over an existing 

set of files in HDFS and handling the gory details of extracting records from those 

files when a query is run. The data on disk is never actually changed, just parsed 

at query time. HiveQL statements are interpreted and an execution plan of 

prebuilt map and reduce classes is assembled to perform the MapReduce 

equivalent of the SQL statement. 

III.4.3 Apache Pig: 

Like Hive, Apache Pig was created to simplify the authoring of MapReduce 

jobs, obviating the need to write Java code. Instead, users write data processing 

jobs in a high-level scripting language from which Pig builds an execution plan 

and executes a series of MapReduce jobs to do the heavy lifting. In cases where 

Pig doesn’t support a necessary function, developers can extend its set of built-in 

operations by writing user-defined functions in Java (Hive supports similar 

functionality as well).  

III.4.4 Apache Sqoop : 

Not only does Hadoop not want to replace your database, it wants to be friends 

with it. Exchanging data with relational databases is one of the most popular 

integration points with Apache Hadoop. Sqoop, short for “SQL to Hadoop,” 

performs bidirectional data transfer between Hadoop and almost any database 

with a JDBC driver. Using MapReduce, Sqoop performs these operations in 

parallel with no need to write code. For even greater performance, Sqoop supports 

database-specific plug-ins that use native features of the RDBMS rather than 

incurring the overhead of JDBC. Many of these connectors are open source, while 

others are free or available from commercial vendors at a cost. Today, Sqoop 

includes native connectors (called direct support) for MySQL and PostgreSQL. 

Free connectors exist for Teradata, Netezza, SQL Server, and Oracle (from Quest 

Software), and are available for download from their respective company websites. 
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III.4.5 Apache Flume : 

Apache Flume is a streaming data collection and aggregation system designed 

to transport massive volumes of data into systems such as Hadoop. It supports 

native connectivity and support for writing directly to HDFS, and simplifies 

reliable, streaming data delivery from a variety of sources including RPC services, 

log4j appenders, syslog, and even the output from OS commands. Data can be 

routed, load-balanced, replicated to multiple destinations, and aggregated from 

thousands of hosts by a tier of agents. 

III.4.6 Apache Oozie : 

It’s not uncommon for large production clusters to run many coordinated Map- 

Reduce jobs in a workflow. Apache Oozie is a workflow engine and scheduler built 

specifically, for large-scale job orchestration on a Hadoop cluster. Workflows can 

be triggered by time or events such as data arriving in a directory, and job failure 

handling logic can be implemented so that policies are adhered to. Oozie presents 

a REST service for programmatic management of workflows and status retrieval. 

III.4.7 Apache ZooKeeper :  

A true workhorse, Apache ZooKeeper is a distributed, consensus-based 

coordination system used to support distributed applications. Distributed 

applications that require leader election, locking, group membership, service 

location, and configuration services can use ZooKeeper rather than reimplement 

the complex coordination and error handling that comes with these functions. In 

fact, many projects within the Hadoop ecosystem use ZooKeeper for exactly this 

purpose (most notably, HBase). 

III.4.8 Apache Spark:  

Spark is both a programming and computing model and provides a gateway 

for in-memory computing. This has made Spark popular and the most widely 

adopted Apache project. Spark provides an alternative for MapReduce which 

enables workloads to execute in memory, instead of in disk, by implementing in-

memory computing, Spark workloads run between 10 and 100 times faster 

compared to disk execution. 
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III.4.9 Apache Ambari:  

Is web-based tool for provisioning managing and monitoring Apache Hadoop 

clusters, it also provides a dashboard for viewing cluster health.  

 

Figure III-3 : The Hadoop Ecosystem. 

The aforementioned tools form the Hadoop ecosystem and provide some 

extension mechanism to it, but in this chapter will only concentrate on HDFS and 

MapReduce, which are the core technologies of Hadoop.(91) 

III.5 Understanding the Hadoop Distributed  

File System (HDFS): 

The data explosion was putting huge pressure on business to seek for 

innovative solutions to address the big data challenges the business needed more 

capable faster powerful and cost-effective computing resources including servers 

networking and storage infrastructure achieving proper balance of compute power 

data store and network was critical to optimal performance as a result the 

company decided on series of steps to address the challenges of handling with the 

volume and speed of big data the first step in this direction was to migrate from 

their traditional tower model servers and adopt a more robust and cost-effective 
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rack model of servers the rack model of servers the servers offer increased 

computing power and improved reliability at reduced cost each server unit is 

referred to as a node several nodes depending on business requirement are 

connected with optic fibers to  form cluster rack servers are ideal for virtualization 

and cloud computing the is they can be easily scaled up by adding more nodes to 

system as per business requirement there is also provision for replacing older 

slower node with new nodes with nodes with better performance next the business 

executive decided to adopt Hadoop distributed file system ( HDFS) this approach 

will provide a fault-tolerant file system that can run on commodity hardware as 

well as one that allowed for the reliable storage and processing of large amounts 

of data. 

The HDFS is a data storage cluster that facilitates the storage and 

management of related files across machines. It offers several unique capabilities 

and benefits, thus includes the following: 

 Stores data reliably. 

 Writes data only once. 

 Allows data to be read from any cached copy of files replicated on 

different machines. 

 Fault tolerant. 

 Ensures portability of data and processes across heterogeneous 

commodity hardware and operating systems.  

 Allows for reliable storage and processing of large amounts of data. 

All these facilities together make HDFS the perfect solution to handle big data. 

III.5.1 HDFS Architecture: 

HDFS is comprises of interconnected clusters of nodes where files and 

directories reside it follows a master/slave architecture (see Figure III-4) the 

HDFS cluster includes single name node master server and multiple data nodes 

that run on the HDFS cluster the name node manages the file system namespace 

and regulates client access to files data nodes store data as blocks within  files 
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these blocks are distributed among the data nodes in the HDFS cluster and are 

managed by the name node that is the name node keeps track of where data is 

physically stored in a data node but how dose HDFS keep track of all these pieces 

the short answer is file system metadata or “data about data”, HDFS metadata is 

a template for providing a detailed description of the following : 

 When was the file created, accessed, modified, deleted, and so on? 

 Where are the blocks of the file stored in the cluster? 

 Who has the rights to view or modify the file? 

 Where is the transaction log for the cluster located? 

HDFS metadata is stored in the name node server, which is repository of all 

the HDFS metadata and data nodes data nodes refer to the place where the user 

data is stored as blocks within files the NameNode is therefore critical and is 

always stored in the memory and DataNodes are stored in racks. Racks are 

physical collections of nodes in a single location.(92)  

 

Figure III-4 : HDFS Architecture. 

III.5.2 Role of Namenode and DataNode in HDFS Architecture: 

Each cluster in HDFS has one master NameNode and many slave data nodes 

the existence of single NameNode in a cluster simplifies the architecture of the 
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system because it acts a single arbitrator and repository for all HDFS metadata 

as a result of the relatively low amount of metadata per file.  

A NameNode: stores all of the metadata in the main memory,enabling a fast 

random Manages all the file operations such as read/write create delete and 

replicate data locks on the data nodes it also Manages the file system Namespace. 

III.5.3 How NameNodes works: 

The NameNode is vital to correct operation of the cluster hence to ensure the 

availability of data, Secondary Name node is also available through a relationship 

exists between the NameNode and the DataNodes they are loosely this allows the 

cluster elements to add or subtract servers as the demand changes normally one 

NameNode and possibly a data node run on one physical server in the rack while 

other servers were data nodes only within the HDFS all the DataNode are 

collected into a the rack the NameNode uses a rack ID to keep track of all the 

DataNodes in the cluster the NameNode tracks the data on various DataNodes 

that make up a complete file. 

 

Figure III-5 : How NameNodes Works. 

III.5.4 How DataNodes Works:  

We know that in HDFS data is stored in multiple Data Node consequently 

access to a file will require access to multiple Data Nodes, its benefit throughput 

in two ways for one the Data Node, storing each HDFS data block in a separate 

file on a local file system Not creating all files in the same directory of the native 
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operating system and instead  determines the optimal number of files per 

directory and creates sub directories appropriately. 

 But how does Data Node and NameNode interact?  

DataNodes constantly interact with the NameNode to check if there is 

anything for them to do which alerts the NameNode about the availability of 

DataNodes its also communicate among themselves to cooperate during normal 

file system operations which is important as blocks for one file are likely to be 

stored on multiple DataNodes. 

DataNodes work by providing "heartbeat" messages to detect and ensure 

connectivity between the NameNode and themselves when a heartbeat is no 

longer detected the NameNode unmapped the DataNode from the cluster and 

keeps on operating as though nothing has happened then when the heartbeat 

returns or a new heartbeat appears it is added to the cluster. 

 

Figure III-6 : How DataNodes Works. 
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III.5.5 Rack Organization: 

Data Notes that we have just discussed are organized within racks. 

Racks are physical collections of machines in a single location using the 

Hadoop rack awareness process the NameNode determines the rack ID that each 

data node belongs to rack awareness also is an important characteristic of the data 

storage in HDFS large HDFS instances run on a cluster of computers that is 

usually spread across many racks network bandwidth and performance is usually 

better between machines in the same rack than between machines in different 

racks a simple policy is to place replicas on unique racks which not only prevents 

losing data when entire rack is lost but also evenly distributes replicas in the 

cluster in  addition it also allows using bandwidth from multiple racks when 

reading data an optimization of a rack aware policy is to use a number of racks 

that is less than number of replicas to minimize global  bandwidth consumption 

and read latency. 

 

Figure III-7 : Rack Organization. 

III.5.6 How Data is stored in HDFS :  

To understand how data is stored in HDFS, think of a file that contains all the 

volumes of an encyclopedia with volume 1 being stored on server 1 volume 2 on 

server 2 and so on if we were to equate this with the Hadoop world pieces of this 

encyclopedia would be stored across the cluster which is a larger unit that is used 

to organize and identify files on the disk. to reconstruct the entire encyclopedia 
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your program would need blocks from every server in the cluster to achieve 

availability if components fail HDFS replicates these smaller pieces on to 

additional servers by default this redundancy offers multiple benefits. 

 The most obvious being higher availability therefore HDFS is so resilient that 

these blocks are replicated throughout the cluster in case of a server failure. 

 Let us now see how this is translated to data storage in HDFS now we know 

that HDFS is implemented as a block structured file system in which individual 

files are broken into blocks of a fixed size and these are stored across clusters, each 

data file is broken into equal size blocks of 64 MB and each block is stored in three 

different DataNodes, this unique capability offers fault tolerant and faster 

processing capabilities but how is this done. 

 The process of storing each block in replicates of three, ensures data 

availability even if any one of the nodes becomes non-functional and thereby: 

 Enhancing the fault tolerance capabilities, the splitting of the file and equal 

size blocks. 

 Ensures that all nodes perform at the same speed and efficiency. 

 

Figure III-8 :  Data Storage in HDFS. 

III.5.6.1 Replication and Recovery: 

File can become unavailable if any one of the machines is lost to avoid the 

problem HDFS replicates each block across three machines by default, so the client 
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is the HDFS user, it can read and write the data though calling the 

API provided by HDFS. While in the read and write process, the client first 

needs to obtain the metadata information from the NameNode, and then the 

client can perform the corresponding read and write operations.(92) 

III.5.7 Data Reading Process in HDFS: 

The data reading process in HDFS is not difficult. It is similar to the 

programming logic, which has created the object, i.e., calling the method and 

performing the execution. The following section will introduce the reading 

processing of the HDFS.(93) 

 

Figure III-9 : HDFS Reading Process. 

According to Figure III-9, there are six steps when the HDFS has the reading 

process: 

1. The client will generate a Distributed File System object of the HDFS class 

library and uses the open() interface to open a file.  

2. Distributed File System sends the reading request to the Namenode by 

using the Remote Procedure Call Protocol to obtain the location address of the data 

block. After the calculating and sorting the distance between the client and the 

Datanode, the Namenode will return the location information of the data block to 

the Distributed File System.  
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3. After, the DistributedFileSystem has already received the distances and 

address of the data block; it will generate an FSDataInputStream object instance 

to the client. At the same time, the FSDataInputStream also encapsulates a 

DFSInputStream object, which is responsible for saving the storing data blocks 

and the address of the Datanode.  

4. When everything gets ready, the client will call the read () method.  

5. After receiving the calling method, the encapsulated DFSInputStream of 

FSDataInputStream will choose the nearest Datanode to read and return the data 

to the client.   

6. When all the data has been read successfully, the DFSInputStream will be 

in charge of closing the link between the client and the Datanode. While the 

DFSInputStream is reading the data from the Datanode, it is hard to avoid the 

failure that may be caused by network disconnection or node errors. When this 

happens, DFSInputStream will give up the failure Datanode and select the 

nearest Datanode. In the later reading process, the disfunctioning Datanode will 

not be adopted anymore. It is observed that HDFS separates the index and data 

reading to the Namenode and Datanode. The Namenode is in charge of the light 

file index functions while the heavy data reading is accomplished by several 

distributed Datanodes. This kind of platform can be easily adapted to the multiple 

user access and huge data reading. 

III.5.8 Data writing Process in HDFS:  

The data writing process in HDFS is the opposite process of the reading but 

the writing process is more complex. The following section will introduce the 

writing process in HDFS briefly. 
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Figure III-10 : HDFS Writing Process. 

The structure of HDFS reading process is similar to the writing process. These 

are the following seven steps: 

1. The client generates a DistributedFileSystem object of the HDFS class 

library and uses the create() interface to open a file.  

2. DistributedFileSystem sends the writing request to the Namenode by using 

the Remote Procedure Call Protocol (RPC). The Namenode will check if there is a 

duplicate file name in it. After that, the client with writing authority can create 

the corresponding records in the namespace. If an error occurrs, the Namenode 

will return the IOException to the client.  

3. After the DistributedFileSystem has received the successful return message 

from the Namenode, it will generate a FSDataOutputStream object to the client. 

In the FSDataOutputStream, there is an encapsulated DFSOutputStream object 

which is responsible for the writing process. The client calls the write() method 

and sends the data to the FSDataInputStream. The DFSOutputStream will put 

the data into a data queue which is read by the DataStreamer. Before the real 

writing, the DataStreamer needs to ask for some blocks and the suitable address 

from the Datanode to store the data.  
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4. For each data block, the Namenode will assign several Datanodes to store 

the data block. For instance, if one block needs to be stored in three Datanodes. 

DataStreamer will write the data block at the first Datanode, then the first 

Datanode will pass the data block to the second Datanode, and the second one 

passes to the third one. Finally, it will complete the writing data in the Datanode 

chain.  

5. After every Datanode has been written, Datanode will report to the 

DataStreamer. Step4 and Step5 will be repeated until all the data has been 

written successfully. 

6. When all the data has been written, the client will call the close() method of 

FSDataInputStream to close the writing operation. 

7.  Finally, the Namenode will be informed by the DistributedFileSystem that 

all the written process has been completed. In the process of data writing, if one 

Datanode makes error and causes writing failure, all the links between the 

DataStreamer and the Datanode will be closed. At the same time, the failure node 

will be deleted from the Datanode chain. The Namenode will notice the failure by 

the returned packages and will assign a new Datanode to continue the processing. 

As long as one Datanode is written successfully, the writing operation will regard 

the process as completed. 

III.5.9 Limitations of HDFS: 

HDFS as the open source implementation of GFS is an excellent distributed 

file system and has many advantages. HDFS was designed to run on the cheap 

commodity hardware not on expensive machines. This means that the 

probabilities of node failure are slightly high. To give a full consideration to the 

design of HDFS, we may find that HDFS has not only advantages but also limits 

for dealing with some specific problems. These limitations are mainly displayed in 

the following aspects:  

 High Access Latency :  HDFS does not fit fort requests which should be 

applied in a short time. The HDFS was designed for the Big Data storage 

and it is mainly used for it high throughput abilities. This may cost the high 
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latency instead.Because HDFS has only one single Master system, all the 

file requests need to be processed by the Master. When there is a huge 

number of requests, there is inevitably has the delay. Currently, there are 

some additional projects to address this limitation, such as using the Hbase 

uses the Upper Data Management project to manage the data.   

 Poor small files performance :  HDFS needs to use the Namenode to manage 

the metadata of the file system to respond to the client and return the 

locations so that the limitation of a file size is determined by the Namenode. 

In general, each file, folder, and block need to occupy the 150 bytes’ space. 

In other words, if there are one million files and each file occupies one block, 

it will take 300MB space. Based on the current technology, it is possible to 

manage millions of files. However, when the files extend to billions, the 

work pressures on the Namenode is heavier and the time of retrieving data 

is unacceptable. 

 Unsupported multiple users write permissions : in HDFS, one file just has 

one writer because multiple users’ writer permissions are not supported yet. 

The write operations can only be added at the end of the file not at the any 

positions of the file by using the Append method.  

We believe that, with the efforts of the developers of HDFS, HDFS will become 

more powerful and can meet more requirements of the users. 

III.6 MapReduce:  

MapReduce is a programming model designed for processing large volumes of 

data in parallel by dividing the work into a set of independent tasks. MapReduce 

programs are written in a particular style influenced by functional 

programming constructs, specifically idioms for processing lists of data. This 

module explains the nature of this programming model and how it can be used to 

write programs, which run in the Hadoop environment, MapReduce engine is a 

high-performance parallel or distributed data processing implementation of the 

MapReduce algorithm this means that it can be used to write programs that can 
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process the large amounts of unstructured data by using a number of distributed 

processors simultaneously. 

III.6.1 MapReduce Functional Concept:  

The MapReduce model is a combination of two capabilities in existing 

functional computer languages Map and reduce the map function of MapReduce 

distributes jobs tasks across a large number of systems it also handles the 

placement of these tasks in a way that it balances the load manages recovery from 

failures. The reducer function aggregates all the elements back together to provide 

a result the map and reduce functions are a good choice for Big Data as they do 

not modify the original data but create new data structures as their output. 

 

Figure III-11 : How MapReduce Works. 

III.6.2 Characteristics of MapReduce:  

There are four main characteristics of the MapReduce:  

 Scheduling: In Map Reduce jobs are broken down into individual tasks for 

the map and the reduce functions of the application the mapping is completed 

before reducing can begin and the entire process is complete only when all the 

reduced tasks have run successfully.  

 Synchronization: since more than one process is concurrently executed in 

the cluster synchronization mechanisms must be in place this includes a function 

called shuffle and sort, which collects and prepares all the mapped data for 

reduction. 
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 Code /Data co-location: where code refers to the mapping functions the code 

and data must be co-located or located on the same machine or node to ensure 

effective processing.  

 Fault and error handling: most MapReduce engines have error handling, 

fault tolerance mechanisms in place that recognize when something wrong, and 

make the necessary correction. 

III.6.3 The working process of MapReduce: 

When to use big data efficiently it is necessary to access large amounts of input 

data select relevant parts from it and to then compute something of value for 

businesses from these parts all the while ensuring that the original data does not 

get changed to ensure that this is done without human error an application needs 

to perform these tasks, the MapReduce framework consists of a single master 

which is called the job tracker and three slaves(see Figure III-12) , referred to as 

task trackers the  client application provide jobs to job tracker  which in turn 

submits or schedules the jobs to different task trackers these task trackers then 

process the data the processed data also Known as map outputs is then is  

forwarded  to reduce tasks which integrates the data from different task trackers 

and generates  the final output MapReduce performs its tasks in a series of steps: 

1. The input is split into multiple pieces of data.  

2. The master and workers are created and the worker processes is executed 

remotely. 

3. The map worker uses the map function to extract relevant data, and then 

generates a key-value pair for the extracted data.  

4. The map worker uses the partitioning function to partition the data into R 

regions. 

5. The master now instructs the reduce workers to contact the map workers to 

get the key/value data for their partition. The data received is sorted as per keys, 

a process termed as the shuffle process. 

6. After storing of the data the reduce function is called for every unique key, 

and is used to write the output sent to file. 
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7. When the reduce workers complete their work, the master transfers the 

control to the user program. 

 

Figure III-12 : MapReduce Procedure. 

III.6.4 Limitations of MapReduce: 

Although MapReduce is popular all over the world, most people still have 

realized the limits of the MapReduce. The  following are the four main limitations 

of the MapReduce: 

 The bottleneck of Job Tracker: 

The JobTracker should be responsible for jobs allocation, management, and 

scheduling. In addition, it should also communicate with all the nodes to know the 

processing status. It is obvious that the JobTracker which is unique in the 

MapReduce, takes too many tasks. If the number of clusters and the submission 

jobs increase rapidly, it will cause network bandwidth consumption. As a result, 

the JobTracker will reach bottleneck and this is the core risk of MapReduce. 

 TaskTracker: 

Because the jobs allocation information is too simple, the TaskTracker might 
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assign a few tasks that need more sources or need a long execution time to the 

same node. In this situation, it will cause node failure or slow down the processing 

speed. 

 Jobs Delay: 

Before the MapReduce starts to work, the TaskTracker will report its own 

resources and operation situation. According to the report, the JobTracker will 

assign the jobs and then the TaskTracker starts to run. Consequently, the 

communication delay may make the JobTracker to wait too long so that the jobs 

cannot be completed in time. 

 Inflexible Framework: 

Although the MapReduce currently allows the users to define its own functions for 

different processing stages, the MapReduce framework still limits the 

programming model and the resources allocation. 

III.7 YARN (Yet Another Resource Negotiator) :  

In order to solve above limitations, the designers have put forward the next 

generation of MapReduce: YARN (Yet Another Resource Negotiator) is Hadoop’

s cluster resource management System.  

YARN was introduced in Hadoop 2 to improve the MapReduce 

implementation, but it is general enough to support other distributed computing 

paradigms as well. YARN provides APIs for requesting and working with cluster 

resources, but these APIs are not typically used directly by user code. Instead, 

users write to higher-level APIs provided by distributed computing frameworks, 

which themselves are built on YARN and hide the resource management details 

from the user. The situation is illustrated in Figure III-13, which shows some 

distributed computing frameworks (MapReduce, Spark, and so on) running as 

YARN applications on the cluster compute layer (YARN) and the cluster storage 

layer (HDFS and HBase).(94) 
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Figure III-13 : YARN Applications. 

Given the limitations of MapReduce, the main purpose of YARN is to divide 

the tasks for the JobTracker.  

In YARN resources are managed by the ResourceManager and the jobs are 

traced by the ApplicationMaster. The TaskTracker has become the NodeManager. 

Hence, the global ResourceManager and the local NodeManager compose the data 

computing framework. In YARN, the ResourceManager will be the resources 

distributor while the ApplicationMaster is responsible for the communication with 

the ResourceManager and cooperate with the NodeManager to complete the tasks. 

III.7.1 YARN architecture: 

Compared with the old MapReduce Architecture, it is easy to find out that 

YARN is more structured and simple. Then, the following section will introduce 

the YARN architecture: 
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Figure III-14 : Yarn Architecture. 

According to Figure III-14 , there are following four core components of the YARN 

Architecture:  

1. Resource Manager:  

According to the different functions of the ResourceManager, it designers has 

divided it into two lower level components: The Scheduler and the 

ApplicationManager. On the one hand, the Scheduler assigns the resource to the 

different running applications based on the cluster size, queues, and resource 

constraints. The Scheduler is only responsible for the resources allocation but is 

not responsible for the monitoring the application implementation and task 

failure. On the other hand, the ApplicationManager is in charge of receiving jobs 

and redistributing the containers for the failure objects.  

2. NodeManager : 

The NodeManager is the frame proxy for each node. It is responsible for 

launching the application container, monitoring the usage of the resource, and 

reporting all the information to the Scheduler.  

3. ApplicationMaster :   

The ApplicationMaster is cooperating with the NodeManager to put tasks in 

the suitable containers to run the tasks and monitor the tasks. When the container 



CHAPTER 03                                                                                            HADOOP AND MAPREDUCE 

 

119 

 

has errors, the ApplicationMaster will apply for another resource from the 

Scheduler to continue the process.  

4. Container : 

In YARN, the Container is the source unit which is the available node splitting 

the organization resources. Instead of the Map and Reduce source pools in 

MapReduce, the ApplicationMaster can apply for any numbers of the Container. 

Due to the same property Containers, all the Containers can be exchanged in the 

task execution to improve efficiency. 

III.7.2 Advantages of YARN: 

Compared to the MapReduce, there are many advantages of the YARN 

framework. There are four main advantages of YARN compared to the 

MapReudce:  

 YARN greatly enhances the scalability and availability of the cluster by 

distributing the tasks to the JobTracker. The ResourceManager and the 

ApplicationMaster greatly relieves the bottleneck of the JobTracker and the safety 

problems in the MapReduce.  

 In YARN, the ApplicationMaster is a customized component. That means 

that the users can write their own program based on the programming model. This 

makes the YARN more flexible and suitable for wide use.  

 YARN, on the one hand, supports the program to have a specific checkpoint. 

It can ensure that the ApplicationMaster can reboot immediately based on the 

status which was stored on HDFS. On the other hand, it uses the ZooKeeper on 

the ResourceManager to implement the failover. When the ResourceManager 

receives errors, the backup ResourceManager will reboot quickly. These two 

measures improve the availability of YARN. 

The cluster has the same Containers are the Reduce and Map pools in Map 

Reduce. Once there is a request for resources, the Scheduler will assign the 

available resources in the cluster to the tasks and regard the resource type. It will 

increase the utilization of the cluster resources. 
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III.8 Commercial distribution of Hadoop: 

Apart from the aforementioned open source distribution of Hadoop which is 

maintained by Apache, several other commercial distribution versions exist too, 

each of them offers unique features to address big data challenges. Together these 

distributions complete the ecosystem of Hadoop, Cloudera, Hortoworks, intel, 

Greenplum,MapR,and AWS EMR are example of such distributions: 

 Hortonworks: Hortonworks data platform is a complete solution offering 

not just data processing and management, but the enterprise spanning 

security and governance. 

 MapR:  this Apache Hadoop distribution claims to provide full data 

protection, no single points of failure, improved performance, and dramatic ease 

of use advantages. 

 Cloudera : Cloudera is seen by many people as the market leader in the 

Hadoop space because it released the first commercial Hadoop distribution and it 

is a highly active contributor of code to the Hadoop ecosystem, in addition to its 

commercial distribution cloudera also maintain a free and open source version 

which integrate the Hadoop core component , called CDH (Cloudera Distribution 

with Hadoop), this will be discussed in detail in the next section as it is the 

platform used for building the cluster and running the application subject of the 

present thesis. 

The Hadoop system can be extended with other technologies such as Dremel, 

HPCC in deploying big data solutions, the diagram (See Figure III-) shows the 

different tools and technologies that are based on Hadoop framework. 

Together all the various elements mentioned above :(i) the Hadoop framework 

(ii) the core components (iii) the commercial distributions and (iv) the related 

technologies form a comprehensive toolset for targeting different big data 

challenges. 
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Figure III-15 : The Hadoop Ecosystem along with the Commercial Distributions.  

III.8.1 Cloudera's Distribution with Hadoop (CDH): 

Cloudera is an organization that has been working with Hadoop and its related 

technologies for a few years now. It is an expert in the field of handling large 

amounts of data using Hadoop and various other open source tools and projects. It 

is one of the major contributors to several of the Apache projects. Over the years, 

Cloudera has deployed several clusters for hundreds of its customers. It is 

equipped with practical knowledge of the issues and details of real production 

clusters. To solve these issues, Cloudera built CDH. In most distributed computing 

clusters, several tools need to work Together to provide the desired output. These 

tools are individually installed and are then configured to work well with each 

other. This approach often creates problems as the tools are never tested together.  

Also, the setup and configuration of these tools is tedious and prone to errors. CDH 

solves this problem as it is packaged with thoroughly tested tools that work well 

together in a single powerful distribution. Installation and configuration of the 

various tools and components is more organized with CDH. CDH has everything 

an enterprise needs for its big data projects. The components packaged into CDH 

provide tools for storage as well as the computation of large Volumes of data. By 

using CDH, an enterprise is guaranteed to have good support from the community 
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for its Hadoop deployment. 

Note that for this thesis we used CDH as our implementation platform. 

 

Figure III-16 : CDH Main Admin Console “Cloudera Manager”. 

III.8.1.1 Cloudera Manager:   

Cloudera Manager is a web-browser-based administration tool to manage 

Apache Hadoop clusters. It is the centralized command center to operate the entire 

cluster from a single interface. Using Cloudera Manager, the administrator gets 

visibility for each and every component in the cluster. A few of the important 

features of Cloudera Manager are listed below: 

 It provides an easy-to-use web interface to install and upgrade CDH across 

the cluster. 

 It provides an easy-to-use web interface to install and upgrade CDH across 

the cluster. 

 Each node in the cluster can be assigned roles and can be configured 

accordingly. It allows the starting and stopping of services across all nodes from a 

single web interface. 
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 It provides complete information for each node, for example, CPU, memory 

disk, and network statuses. 

Cloudera Manager is available in the following two editions: 

 Cloudera Manager Standard (free). 

 Cloudera Manager Enterprise (licensed). 

Cloudera Manager Standard Edition, though free, is a feature packed tool that 

ca be used to deploy and manage Apache Hadoop clusters with no limitation on 

the number of nodes. However, there are a few features that are not part of the 

standard edition. These are as follows: 

 Lightweight Directory Access Protocol (LDAP) authentication.  

 Alerts via SNMP (Simple Network Management Protocol). 

 Operational reports and support integration. 

 Enhanced cluster statistics. 

 Disk quota management. 

III.8.1.2 Understanding the Cloudera Manager Architecture: 

The Cloudera Manager Server is the master service that manages the data model 

of the entire cluster in a database. The data model contains information regarding 

the services, roles, and configurations assigned for each node in the cluster.  

The Cloudera Manager Server is responsible for performing the following 

functions: 

 It communicates with Cloudera Manager Agents that are installed on each 

node of the cluster and assigns tasks as well as checking the health of each agent 

by monitoring its periodic heartbeats. 

 It provides an administrator web interface for the end user to perform 

administrator operations. 

 It calculates and displays dashboards of the health for the entire cluster. 
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 It monitors the important parameters such as disk usage, CPU, and RAM 

for each node in the cluster. It also allows full control on the Hadoop daemons 

running on the cluster. 

 It manages the Kerberos credentials for the services running on the cluster. 

Kerberos is the tool used to manage the authentication and authorization 

requirements of the cluster. 

 It exposes a set of easy-to-use APIs that helps developers write their own 

applications to interact with the Cloudera Manager Server. 

The Cloudera Manager Agent is installed on each node of the cluster. It is 

responsible for accepting tasks from the Cloudera Manager Server and performs 

the starting and stopping of Hadoop daemons on its own node. It is also responsible 

for gathering all system-level information and statistics and is relayed back to the 

Cloudera Manager Server. 

Figure III-17 depicts the cloudera manager architecture. 

 

Figure III-17 : Cloudera Manager Architecture.(90) 
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Key Points – Chapter 03 : 

 

 We Introduced the chapter by presenting the general History and a 

concepts of Hadoop platform. 

 We described the main component that make up what is known by the 

Hadoop ecosystem such as Hbase, Hive,Flume,……etc 

 We presented in detail the core component of Hadoop. HDFS its main 

fault tolerant storage system that provides the basic structure and service 

needed to support the core requirement of storage for Big Data and 

MapReuce its computational engine for distributed computing. 

 We concluded the chapter by defining in brief the Cloudera Distribution 

with CDH and its main management console Cloudera Manager, which 

are used in conjunction as a platform for running the application.  
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IV. Chapter 04  

Implementation 

Context:  

As cited in previous chapters, frequent subgraph mining is one of the most 

challenging tasks, this task has been highly motivated by the tremendously 

increasing size of existing graph databases especially datasets in certain domains 

such as bioinformatics, chemoinformatics and social networks. Due to this fact, 

there is urgent need for efficient and scaling approaches for frequent subgraph 

discovery, in this chapter, we study a novel iterative map reduce based method for 

distributed large scale subgraph mining called FSM-H implemented with Hadoop. 

The algorithm allows for using a different filtering and partitioning schemes, and 

breaks the mining into different phases.  

 

IV.1 Background: 

In this work we are interested in frequent subgraph mining in a large graph 

database containing small-medium size graphs:  

Let, 𝐺 = {𝐺1, 𝐺2, …… . . , 𝐺𝑛} be a graph database, where each 𝐺𝑖 𝜖 𝐺, ∀ 𝑖 =

{1,…… , 𝑛}  represents a labeled, undirected, simple (no multiple edges between a 

pair of vertices), and connected graph. For a graph g, its size is defined as the 

number of edges it contains. Now, 𝑡(𝑔) = { 𝐺𝑖 ∶  𝑔 ⊆  𝐺𝑖 𝜖 𝐺} , ∀𝑖 = {1…𝑛},  is the 

support-set of the graph g (here the subset symbol denotes a subgraph relation). 

Thus, 𝑡(𝑔) contains all the graphs in G that has a subgraph isomorphic to 𝑔. The 

cardinality of the support-set is called the support of 𝑔. 𝑔 is called frequent if 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥  𝜋𝑚𝑖𝑛 , where  π𝑚𝑖𝑛 is predefined/user specified minimum 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (minsup) threshold. The set of frequent patterns are represented by 𝐹. 

Based on the size (number of edges) of a frequent pattern, we can partition 𝐹 into 
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several disjoint sets, 𝐹𝑖 such that each of the 𝐹𝑖 contains frequent patterns of size 

𝑖 only. 

Example:  

 

Figure IV-1 : (a) Graph database with 3 graphs with labeled vertices 

 (b) Frequent subgraph of (a) with minsup = 2   

Figure IV-1 (a) shows a database with 3 vertex labeled graphs ( 𝐺1, 𝐺2 and 𝐺3) 

with 𝜋𝑚𝑖𝑛 = 2, there are thirteen frequent subgraphs as shown in Figure IV-1 (b). 

Note that, For the sake of simplicity in this example we assume that the edges of 

the input graphs are unlabeled. But FSM-H is designed and developed to handle 

labels both on vertices and edges. 

IV.2 Graph Partitions:  

Let 𝑆𝑀 {𝑀1, 𝑀2, … . . , 𝑀𝑁} be a set of distributed machine, and let 𝑃𝑎𝑟𝑡𝑗  (𝐺)  ⊆

𝐺 be a non-empty subset of 𝐺, we define partitioning of the graph database over 

𝑆𝑀 by the following:  

𝑃𝑎𝑟𝑡(𝐺) =  {𝑃𝑎𝑟𝑡1(𝐺), 𝑃𝑎𝑟𝑡2(𝐺), …… . , 𝑃𝑎𝑟𝑡𝑁(𝐺)} such that: 

 ⋃ {𝑃𝑎𝑟𝑡𝑖(𝐺)} = 𝐺, 𝑎𝑛𝑑 
𝑁
𝑖=1  



CHAPTER 04                                                                                                                   IMPLEMENTATION 

 

129 

 

 ∀ 𝑖 ≠ 𝑗, 𝑃𝑎𝑟𝑡𝑖(𝐺) ∩ 𝑃𝑎𝑟𝑡𝑗(𝐺) =  ∅.(13) 

The above definition presents the general idea of partitioning graph datasets 

over a set of machines, later in the chapter we define the heuristic employed by 

FSM-H when doing so, for instance edge based of transaction based partitioning. 

IV.3 Challenges:  

Solving the task of frequent subgraph mining (FSM) on a distributed platform 

like Map Reduce is challenging for various reasons. First, an FSM method 

computes the support of a candidate subgraph pattern over the entire set of input 

graphs in a graph dataset.  

In a distributed platform, if the input graphs are partitioned over various 

worker nodes like in our case. the local support of a subgraph in the respective 

partition at a worker node is not much useful for deciding whether the given 

subgraph is frequent or not. Also, local support of a subgraph in various nodes 

cannot be aggregated in a global data structure, because, MapReduce 

programming model does not provide any built-in mechanism for communicating 

with a global state. Also, the support computation cannot be delayed arbitrarily, 

as following Apriori principle, future candidate patterns can be generated only 

from a frequent pattern. 

IV.4 Contribution and Goals:  

We study here an FSM-H algorithm which implements a distributed frequent 

subgraph mining method over Map Reduce programming model.  Given a graph 

database, and a minimum support threshold, FSM-H generates a complete set of 

frequent subgraphs. To ensure completeness, it constructs and retains all patterns 

in a partition that have a non-zero support in the map phase of the mining, and 

then in the reduce phase, it decides whether a pattern is frequent by aggregating 

its support computed in other partitions from different computing nodes. To 

overcome the dependency among the states of a mining process, FSM-H runs in 

an iterative fashion, where the output from the reducers of iteration 𝑖 − 1 is used 

as an input for the mappers in the iteration 𝑖. The mappers of iteration 𝑖 generate 

candidate subgraphs of size 𝑖 (number of edge), and also compute the local support 
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of the candidate pattern. The reducers of iteration 𝑖 then find the true frequent 

subgraphs (of size 𝑖) by aggregating their local supports. They also write the data 

in disk that are processed in subsequent iterations.an external condition decides 

the termination of an iteration (job). 

Pseudo code for iterative MapReduce algorithm is presented in Figure VI-2 : 

 

Figure IV-2 : Iterative MapReduce Algorithm 

In the subsequent sections to come:  

 We introduce, FSM-H, a novel iterative MapReduce based frequent 

subgraph mining algorithm, which is complete. 

 We describe the data structures that is used to save and consequently 

propagate the states of the mining process over different iterations. 

 We empirically demonstrate the performance of FSM-H on synthetic as well 

as real world large datasets. 

IV.5 Method:  

As mentioned earlier FSM-H is designed as an iterative MapReduce process 

At the beginning of iteration 𝑖, FSM-H has at its disposal all the frequent 

patterns of size  𝑖 − 1 (𝐹𝑖−1) and at the end of iteration 𝑖, it returns all the frequen 

patterns of size 𝑖 (𝐹𝑖) Note that, in this work, the size of a graph is equal to the 

number of edges it contains. 

For a mining task if 𝐹 is the set of frequent patterns,FSM-H runs for a total of 

𝑙 iterations, where 𝑙 is equal to the size of the largest graph in 𝐹.  

To distribute a frequent subgraph mining (FSM) task, FSM-H partitions the 

graph dataset 𝐺 = {𝐺𝑖}𝑖=1,…,𝑛 into 𝑘 disjoint partitions, such that each partition 
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contains roughly equal number of graphs; thus it mainly distributes the support 

counting (discussed in details later) subroutine of a frequent pattern mining 

algorithm. Conceptually, each node of FSM-H runs an independent FSM task over 

a graph dataset which is 1 𝑘′⁄ th of the size of |𝐺|.Note that, 𝑘 is an important 

parameter and details on how to choose it optimally is explained later In this 

chapter.(85) 

FSM algorithms in general are an adaptation of the baseline algorithm shown 

in Figure II-23 far earlier in chapter 02, which actually runs in a sequential 

machine, although just mentioned in chapter 02 below we provide more details on 

this algorithm. Note that we do so with pattern growth approach as it is adopted 

by FSM-H: 

The pseudo-code The pseudo-code shown in Figure II-23 implements an FSM 

algorithm that follows a typical candidate generation-and-test paradigm with 

breadth-first candidate enumeration. In this paradigm, the mining task starts 

with frequent patterns of size one (single edge patterns), denoted as 𝐹1 (Line0). 

Then in each of the iterations of the while loop (Line 1-6), the method progressively 

finds 𝐹2, 𝐹3 and so on until the entire frequent pattern set 𝐹 is obtained. If 𝐹𝑘 is 

nonempty at the end of an iteration of the above while loop, from each of the 

frequent patterns in 𝐹𝑘  the mining method creates possible candidate frequent 

patterns of size 𝑘 + 1 (Line 2). These candidate patterns are represented as the set 

𝐶. For each of the candidate patterns, the mining method computes the pattern’s 

support against the dataset 𝐺 (Line 5). If the support is higher than the minimum 

support threshold (𝑚𝑖𝑛𝑠𝑢𝑝), the given pattern is frequent, and is stored in the set 

𝐹𝑘+1 (Line 6). Before support counting, the method also ensures that different 

isomorphic forms of a unique candidate patterns are unified and only one such 

copy is processed by the algorithm (Line 4). Once all the frequent patterns of size 

𝑘 +  1 are obtained, the while loop in Line 1 to 7 continues. Thus each iteration of 

the while loop obtains the set of frequent patterns of a fixed size, and the process 

continues until all the frequent patterns are obtained. In Line 8, the FSM 

algorithm returns the union of 𝐹  𝑖: 1 ≤  𝑖 ≤  𝑘 −  1. 
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Below, we provide a short description of each of the subroutines that are called 

in the pseudo-code. 

IV.5.1 Candidate Generation:  

Given a frequent pattern (say, 𝑐) of size 𝑘, this step adjoins a frequent edge 

(which belongs to 𝐹  1) with 𝑐 to obtain a candidate pattern d of size 𝑘 +  1. If 𝑑 

contains an additional vertex then the added edge is called a forward edge, 

otherwise it is called a back edge; the latter simply connects two of the existing 

vertices of 𝑐. Additional vertex of a forward edge is given an integer id, which is 

the largest integer id following the ids of the existing vertices of 𝑐; thus the vertex-

id stands for the order in which the forward edges are adjoined while building a 

candidate pattern. 𝑐 is called the parent of 𝑑, and 𝑑 is a child of 𝑐, and based on 

this parent-child relationship we can arrange the set of candidate patterns of a 

mining task in a candidate generation tree (see figure IV-3) :  

Note however that, if 𝑑 has 𝑘 +  1 edges, based on the order how its edges 

have been adjoined, 𝑑 could have many different generation paths in a candidate 

generation tree; FSM-H impose a restriction on the generation paths and only one 

of which is considered valid, so that multiple copies of a candidate pattern are not 

generated. Thus the candidate generation tree of an FSM-H can be unambiguously 

defined. FSM-H also impose restriction on the extension nodes of the parent 

pattern by allowing edge adjoining only with vertices on the right most path. Right 

most path is the mechanism used in the so popular gSpan algorithm, so simply 

put “right most vertex” (RMV) is the vertex with the largest id in a candidate 

subgraph and “right most path” (RMP) is the shortest path from the lowest id 

vertex to the RMV strictly following forward edges.(85) 

Example: In the figure IV-3 below we define part of the candidate generation 

tree of the FSM-H task that we defined in figure IV-1. 
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Figure IV-3 : Candidate generation subtree rooted under A-B. 

Suppose we have explored all frequent level-1 patterns (𝑔1 to 𝑔4 in figure IV-1 

– (b)) and we want to generate candidates from one of those patterns, namely 𝐴 −

𝐵. Figure IV-3 shows the part of the candidate generation subtree that is rooted 

at the pattern 𝐴 − 𝐵. The nodes at the level 2 (root of the subtree is level 1) of this 

subtree shows all possible candidate patterns of size 2 that are built by adjoining 

the edge 𝐵 −  𝐶, 𝐵 −  𝐷, and 𝐵 −  𝐸, respectively, with the pattern 𝐴 −  𝐵. Note 

that, all these candidate patterns are created by introducing a forward edge. At 

this level, no candidate can be obtained by adding back edges because doing so will 

create a multi-graph, which we do not allow. Also note, we do not extend 𝐴 − 𝐵 

with another copy of 𝐴 − 𝐵 to create the pattern 𝐴 − 𝐵 − 𝐴 because none of the 

database graphs in Figure IV-1 – (a) has multiple copies of the edge 𝐴 − 𝐵. Among 

these three candidate patterns, the pattern 𝐴 − 𝐵 − 𝐸 is infrequent which is 

denoted with the mark (𝐼) near the pattern. The remaining two patterns are 

frequent, and they are subsequently extended to generate level-3 candidates. For 

example, the pattern 𝐴 −  𝐵 − 𝐷 is extended with a back-edge to obtain the 

triangle pattern 𝐴 − 𝐵 –𝐷 (all level-3 or level-4 candidates are not shown in this 

figure). There are other important observations in Figure IV-3. First, the 

extension of a pattern is only made on the rightmost path of that pattern. For 

visual clarification, for each pattern we draw its rightmost path along a horizontal 
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line. The second observation is that, the duplicate generation paths are avoided; 

for example, the pattern 𝐵 − {𝐴, 𝐶, 𝐷} (the first pattern from the left on level-3) is 

generated from the pattern 𝐴 − 𝐵 − 𝐶, but not from the pattern 𝐴 −  𝐵 −  𝐷. 

IV.5.2 Isomorphism checking:  

As we mentioned in the previous paragraph (candidate generation), a 

candidate pattern ca be generated from multiple generation paths, but only one 

such path is explored during the candidate generation step and the remaining 

paths are identified and subsequently ignored. To identify invalid candidate 

generation paths FSM-H needs to solve the graph isomorphism task as the 

duplicate copies of a candidate patterns are isomorphic to each other. well-known 

method for identifying graph isomorphism is to use canonical coding scheme, FSM-

H uses min-dfs-code based canonical coding for isomorphism checking. 

Example:  

The Figure IV-4 below shows two isomorphic forms of the pattern 𝐵 −

 {𝐴, 𝐶, 𝐷}, however during candidate generation phase the first is generated 

from 𝐴 −  𝐵 −  𝐶 whereas the  second would have been generated from 𝐴 −  𝐵 −

 𝐷. According to the canonical coding scheme impose by min-dfs-code the pattern 

in Figure IV-4 (a) maps to a code string (1, 2, 𝐴, 𝐵)(2, 3, 𝐵, 𝐶)(2, 4, 𝐵, 𝐷) in which each 

parenthesized part is an edge written in the format (𝑖𝑑1, 𝑖𝑑2, 𝑙𝑎𝑏𝑒𝑙1, 𝑙𝑎𝑏𝑒𝑙2). Using 

the same coding scheme, the pattern in Figure IV-4 (b) maps to the string 

(1, 2, 𝐴, 𝐵)(2, 3, 𝐵, 𝐷)(2, 4, 𝐵, 𝐶). However, the min-dfs-code of the pattern 𝐵 −

 {𝐴, 𝐶, 𝐷} is (1, 2, 𝐴, 𝐵)(2, 3, 𝐵, 𝐶)(2, 4, 𝐵, 𝐷), which matches with the isomorphic form 

shown in Figure IV-4 (a) thus the pattern will only be generated by extending 𝐴 −

𝐵 − 𝐶. Other generation paths, including the one that extends 𝐴 −  𝐵 −  𝐷 are 

invalid and hence are ignored after performing isomorphism checking. 
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Figure IV-4 : Graph isomorphism. 

IV.5.3 Support Counting:  

Support counting of a graph pattern g is important to determine whether g is 

frequent or not. To count g’s support we need to find the database graphs in which 

g is embedded. One possible way to compute the support of a pattern without 

explicitly performing the subgraph isomorphism test across all database graphs is 

to maintain the occurrence-list (OL) of a pattern; such a list stores the embedding 

of the pattern (in terms of vertex id) in each of the database graphs where the 

pattern exists. When a pattern is extended to obtain a child pattern in the 

candidate generation step, the embedding of the child pattern must include the 

embedding of the parent pattern, thus the occurrence-list of the child pattern can 

be generated efficiently from the occurrence list of its parent. Then the support of 

a child pattern can be obtained trivially from its occurrence-list. 

Example:  

In Figure IV-5 we illustrate a simple scenario of support counting based on 

occurrence list as it is performed by FSM-H. In the top three rows of Figure IV-5, 

we show the OL of the pattern 𝐴 −  𝐵, 𝐵 −  𝐷 and 𝐵 −  𝐸. The Pattern 𝐴 –  𝐵 occurs 

in Graph 𝐺1 and 𝐺2 in vertex pair (1, 2) and(1, 2), respectively; so its OL is: 

1: [(1,2)]; 2: [(1,2)]. If we adjoin 𝐵 −  𝐷 with the pattern 𝐴 −  𝐵 and form the 

pattern 𝐴 −  𝐵 − 𝐷, then we can construct the OL of 𝐴 −  𝐵 −  𝐷 (shown in 4th 

row) by intersecting the OLs of 𝐴 −  𝐵 and 𝐵 −  𝐷. Note that, the intersection 

considers both the graph ids and the vertex ids in the OLs. By counting the graph 
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ids present in an OL we can compute the support of that pattern. In Figure IV-5,  

the pattern 𝐴 −  𝐵 −  𝐷 is frequent given minimum support 2 but the pattern 𝐴 −

𝐵 − 𝐸 is not frequent. 

 

Figure IV-5 : Support Counting. 

IV.6 Distributed paradigm of FSM-H:  

An important observation regarding the baseline FSM algorithm (Figure II-

14) is that it obtains all the frequent patterns of size 𝑘 in one iteration of while 

loop from Line 1 to Line 6. The tasks in such an iteration comprise to one 

MapReduce iteration of FSM-H. Another observation is that, when the FSM-H 

algorithm generates the candidates of size 𝑘 + 1, it requires the frequent patterns 

of size 𝑘 (𝐹𝑘) In an iterative MapReduce, there is no communication between 

subsequent iterations. So, 𝑘 +  1’𝑡ℎ iteration of FSM-H obtains 𝐹𝑘   from the disk 

which is written by the reducers at the end of the 𝑘’𝑡ℎ iteration. A final observation 

is that, deciding whether a given pattern is frequent or not requires counting it’s 

support over all the graphs in the dataset (𝐺). However, as we mentioned earlier 

each node of FSM-H works only on a disjoint partition of 𝐺. So, FSM-H requires to 

aggregate the local support from each node to perform the task in Line 5. From 

the above observations we identify the distribution of mining task of FSM-H 

among the mappers and the reducers. 
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IV.6.1 Pseudo code for the mapper:   

Figure IV-6 shows the pseudo-code of a mapper. The argument 𝐹𝑘
𝑝

 represents 

the set of 𝑠𝑖𝑧𝑒 − 𝑘 frequent subgraph having non-zero support in a specific 

partition 𝑝. The mapper reads it from Hadoop Distributed FileSystems (HDFS). 

Each pattern (𝑠𝑎𝑦 𝑥) in 𝐹𝑘
𝑝

  is read as a key-value pair. The key is the min-dfs-code 

of the pattern (𝑥.𝑚𝑖𝑛 − 𝑑𝑓𝑠 − 𝑐𝑜𝑑𝑒) and the value is a pattern object (𝑥. 𝑜𝑏𝑗); here 

“object” stands for its usual meaning from the object oriented programming. This 

pattern object contains all the necessary information of pattern i.e., its support, 

neighborhood lists, and occurrence list within partition 𝑝. It also contains 

additional data structure that are used for facilitating candidate generation from 

this pattern in the same partition. We will discuss the pattern object in details in 

a later section. 

 

Figure IV-6 : Mapper of distributed FSM-H Algorithm. 

The mapper then generates all possible candidates of size 𝑘 + 1 (Line 1) by 

extending each of the patterns in 𝐹𝑘
𝑝

 . For each of the generated candidates (𝑠𝑎𝑦, 𝑐), 

the mapper performs isomorphism checking to confirm whether 𝑐 is generated 

from a valid generation path; in other words, it tests whether 𝑐 passes the min-

dfs-code based isomorphism test (Line 3). For successful candidates, the mapper 

populates their occurrence list (Line 4) over the database graphs in the partition 

𝑝. If the occurrence list of a candidate pattern is non-empty, the mapper constructs 

a keyvalue pair, such as, (𝑐.𝑚𝑖𝑛 − 𝑑𝑓𝑠 − 𝑐𝑜𝑑𝑒, 𝑐. 𝑜𝑏𝑗) and emits the constructed pair 

for the reducers to receive (Line6). 
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IV.6.2 Pseudo code for the reducer: 

shows the pseudo code for a reducer in distributed frequent subgraph mining. 

The reducer receives a set of key-value pairs, where the key is the min-dfs-code of 

a pattern namely 𝑐.𝑚𝑖𝑛 − 𝑑𝑓𝑠 − 𝑐𝑜𝑑𝑒 and the value is a list of 𝑐. 𝑜𝑏𝑗’𝑠 constructed 

from all partitions where the pattern 𝑐 has a non-zero support.  

 

Figure IV-7 : Reducer of distributed FSM-H Algorithm. 

The Reducer then iterates (Line 1) over every 𝑐. 𝑜𝑏𝑗 and from the length of the 

occurrence list of each 𝑐. 𝑜𝑏𝑗 it computes the aggregated support of 𝑐. If the 

aggregated support is equal or higher than the minimum support threshold (Line 

3), the reducer writes each element in the list paired with the 𝑚𝑖𝑛 − 𝑑𝑓𝑠 − 𝑐𝑜𝑑𝑒 of 

𝑐 in HDFS for the mappers of the next iteration. 

IV.7 Execution flow of FSM-H:  

The Figure IV-8 below illustrates the execution flow of FSM-H. The execution 

starts from the mappers as they read the key-value pair of size 𝑘 patterns in 

partition 𝑝 from the HDFS. As shown in the Figure IV-8, the mappers generate 

all possible 𝑘 + 1 − 𝑠𝑖𝑧𝑒 candidate patterns and perform the isomorphism checking 

within partition 𝑝. For a pattern of size 𝑘 + 1 that passes the isomorphism test and 

has a non-zero occurrence, the mapper builds its key-value pair and emits that for 

the reducers. These key-value pairs are shuffled and sorted by the key field and 

each reducer receives a list of values with the same key field. The reducers then 

compute the support of the candidate pattern by aggregating the support value 

computed in the partitions where the respective pattern is successfully extended. 

If a pattern is frequent, the reducer writes appropriate key-value pairs in the 

HDFS for the mappers of the next iteration. If the number of frequent 𝑘 +  1 size 
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pattern is zero, execution of FSM-H halts. 

 

Figure IV-8 : Execution flow of FSM-H Algorithm. 

IV.8 Framework of FSM-H:  

FSM-H has three important phases: data partition preparation phase and 

mining phase. In data partition phase FSM-H creates the partitions of input data 

along with the omission of infrequent edges from the input graphs. Preparation 

and mining phase performs the actual mining task. Figure IV-9 shows a flow 

diagram of different phases for a frequent subgraph mining task using FSM-H. 

Below, we present an in-depth discussion of each of the phases. 
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Figure IV-9 : Framework of FSM-H. 

IV.8.1 Data partition Phase:  

In data partition phase, FSM-H splits the input graph dataset (𝐺) into many 

partitions. One straightforward partition scheme is to distribute the graphs so 

that each partition contains the same number of graphs from 𝐺. This works well 

for most of the datasets. However, for datasets where the size (edge count) of the 

graphs in a dataset vary substantially, FSM-H offers another splitting option in 

which the total number of edges aggregated over the graphs in a partition are close 

to each other. In experiment section, we show that the latter partition scheme has 

a better runtime performance as it improves the load balancing factor of a 

MapReduce job. For FSM-H, the number of partition is also an important tuning 

parameter. In experiment section, we show that for achieving optimal 

performance, the number of partitions for FSM-H should be substantially larger 

than the number of partitions in a typical MapReduce task. During the partition 
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phase, input dataset also goes through a filtering procedure that removes the 

infrequent edges from all the input graphs. While reading the graph database for 

partitioning, FSM-H computes the support-list of each of the edges from which it 

identifies the edges that are infrequent for the given minimum support threshold. 

Example:  

For the graph dataset in Figure IV-1, for a minimum support threshold of 2, 

the edges 𝐴 −  𝐵, 𝐵 −  𝐶, 𝐵 −  𝐷, 𝐷 −  𝐸 and 𝐵 −  𝐸 are frequent and the remaining 

edges are infrequent. Now suppose FSM-H makes two partitions for this dataset 

such that the first partition contains 𝐺1, and the second partition contains 𝐺2 and 

𝐺3.While making these partitions FSM-H filters the infrequent edges. Figure IV-

10 shows the partitioning where the infrequent edges are stripped off from the 

database graphs. 

 

Figure IV-10 : Input dataset after partition and filtering phase. 

IV.8.2 Preparation Phase:  

The mappers in this phase prepare some partition specific data structures 

such that for each partition there is a distinct copy of these data structures. They 

are static for a partition in the sense that they are same for all patterns generated 

from a partition. The first of such data structure is called 𝑒𝑑𝑔𝑒 − 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 − 𝑚𝑎𝑝, 

which is used for any candidate generation that happens over the entire mining 

session. It stores the possible extension from a vertex considering the edges that 

exists in the graphs of a partition. For example, the graphs in partition two have 

edges such as 𝐵 − 𝐷,𝐵 −  𝐶, 𝐵 − 𝐴, and 𝐵 − 𝐸. So, while generating candidates, if 𝐵 

is an extension stub, the vertex 𝐴, 𝐶, 𝐷 or 𝐸 can be the possible vertex label of the 
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vertex that is at the opposite end of an adjoined edge. This information is stored 

in the 𝑒𝑑𝑔𝑒 − 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 − 𝑚𝑎𝑝 data structure for each of the vertex label that exist 

in a partition. The second data structure is called 𝑒𝑑𝑔𝑒 − 𝑂𝐿, it stores the 

occurrence list of each of the edges that exist in a partition; FSM-H use it for 

counting the support of a candidate pattern which is done by intersecting the OL 

of a parent pattern with the OL of an adjoint edge. 

Example:  

Figure IV-11 (a) and Figure IV-11 (b) shows these data structures for the 

Partition 1 and 2 defined in Figure IV-10. In partition 1, the edge-extension choice 

from a vertex with label 𝐷 is only 𝐵 (shown as 𝐷 ∶  (𝐵)), as in this partition 𝐵 −  𝐷 

is the only frequent edge with a 𝐵 vertex. On the other hand, the corresponding 

choice for partition 2 is 𝐵 and 𝐸 (shown as, 𝐷 ∶  (𝐵; 𝐸)), because in partition 2 we 

have two edges, namely 𝐵 − 𝐷 and 𝐷 − 𝐸 that involve the 𝐷 vertex. In partition 

1, the edge 𝐵 − 𝐷 occurs in 𝐺1 at vertex 𝑖𝑑 (2, 4); on the other hand in partition 2, 

the same edge occurs in 𝐺2 and 𝐺3at vertex 𝑖𝑑 (2, 3) and (1, 2), respectively. This 

information is encoded in the 𝑒𝑑𝑔𝑒 − 𝑂𝐿 data structures of these partitions as 

shown in this figure. 

 

Figure IV-11 : The static data structures and A-B-C pattern object in partition 1 

and 2 (a) Edge-extension-map (b) Edge-OL (c) and (d) A-B-C Pattern object. 
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The mappers in the preparation phase also start the mining task by emitting 

the frequent single edge patterns as key-value pair. Note that, since the partition 

phase have filtered out all the infrequent edges, all single edges that exist in any 

graph of any partition is frequent. As we mentioned earlier the key of a pattern is 

its 𝑚𝑖𝑛 − 𝑑𝑓𝑠 − 𝑐𝑜𝑑𝑒 and the value is the pattern object. 

Each pattern object has four essential attributes: (a) 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝐿𝑖𝑠𝑡 (𝑂𝐿) that 

stores the embedding of the pattern in each graph in the partition, (b) 𝑅𝑖𝑔ℎ𝑡 −

 𝑀𝑜𝑠𝑡 − 𝑃𝑎𝑡ℎ (c) 𝑉𝑆𝐸𝑇 that stores the embedding of the Right Most Path in each 

graph in the partition, and (d) 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 value. Mappers in the preparation phase 

compute the 𝑚𝑖𝑛 − 𝑑𝑓𝑠 − 𝑐𝑜𝑑𝑒 and create the pattern object for each single-edge 

patterns. While emitting a key-value pair to a reducer, the mappers also bundle 

the static data structures, 𝑒𝑑𝑔𝑒 − 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 − 𝑚𝑎𝑝 and 𝑒𝑑𝑔𝑒 − 𝑂𝐿 with each of the 

pattern object. FSM-H uses Java serialization to convert these objects in to byte 

stream while sending them as value in a key-value pair. The reducers of this phase 

actually do nothing but writing the input key-value pairs in HDFS since all the 

single length patterns that the mappers send are frequent. In Figure IV-9, the 

second block portrays the preparation phase. 

Example:  

Figure IV-11 (c) and IV-11 (d) exhibits the 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 object along with their 

attributes for the pattern 𝐴 −  𝐵 −  𝐶 in partition 1 and 2, respectively. The 

attribute 𝑂𝐿 records the occurrence of this pattern in the corresponding database 

graphs; if a pattern has multiple embeddings in a database graph all such 

embeddings are stored. 𝑅𝑖𝑔ℎ𝑡 − 𝑀𝑜𝑠𝑡 − 𝑃𝑎𝑡ℎ records the id of the 𝑟𝑖𝑔ℎ𝑡 − 𝑚𝑜𝑠𝑡 −

𝑝𝑎𝑡ℎ vertices in the pattern object and 𝑉𝑆𝐸𝑇 stores the corresponding ids in the 

database graphs. Like 𝑂𝐿, 𝑉𝑆𝐸𝑇 is also a set and it stores information for multiple 

embedding if it applies. Finally, Support stores the support value of the pattern. 

In the following discussion, we use ♣ and ♠ to denote a pattern object from 

partition 1 (𝐺1) and 2 (𝐺2, 𝐺3), respectively. For example, ♠𝑎𝑏𝑐identifies the pattern 

𝐴 − 𝐵 − 𝐶 from partition 2 as shown in Figure IV-11 (d). 
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IV.8.3 Mining Phase:  

In this phase, mining process discovers all possible frequent subgraphs 

through iteration. Preparation phase populates all frequent subgraphs of size one 

and writes it in the distributed file system. Iterative job starts by reading these 

from HDFS. Each of the mappers of an ongoing iteration is responsible for 

performing the mining task over a particular chunk of the data written in HDFS 

by the preparation phase. The map function of mining phase reconstructs all the 

static data structures that are required to generate candidate patterns from the 

current pattern. Using the static data structures and the pattern object, the 

mappers can independently execute the subroutine that is shown in Figure IV-6. 

The reducers in this phase simply execute the routine in Figure IV-7. 

Example: 

The figure IV-12 below provides a detail walk-through of a MapReduce job in 

iteration phase with respect to the partitioned toy dataset mentioned in Figure IV-

10. Figure IV-12 (a) and (b) indicates the key-value pairs for pattern 𝐴 −  𝐵 from 

partition 1 and 2. Suppose these key-value pairs are feed as input for Mapper 1 

and Mapper 2 in Figure IV-12. The mappers first extract all data structures from 

the value field of key-value pair including the partition-specific static data 

structures (𝑆𝐷𝑆 in Figure IV-12) such as 𝑒𝑑𝑔𝑒 − 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 − 𝑚𝑎𝑝 and 𝑒𝑑𝑔𝑒 − 𝑂𝐿. 

Then they perform the steps mentioned in Figure IV-6. Figure IV-12 (c) and (d) 

show the key-value pairs of 𝐴 − 𝐵 − 𝐶 that are generated by Mapper 1 and Mapper 

2 by extending the pattern 𝐴 − 𝐵. The Reducers collect all the values for a key and 

compute the support of the pattern by adding the supports from individual 

partitions. In this example, the support of the pattern 𝐴 − 𝐵 − 𝐶 is 2; since 

𝑚𝑖𝑛𝑠𝑢𝑝 = 2, this pattern is frequent. Reducers then write the key-value pairs 

corresponding to the pattern 𝐴 −  𝐵 −  𝐶 in HDFS. 
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Figure IV-12 : One iteration of the mining phase of FSM-H with respect to pattern 

A-B. 

IV.9 Hadoop Pseudo Code:  

In this section, we present the pseudo code of each phase using the syntax of 

Hadoop framework. Figure IV-13, IV-14 and IV-15 demonstrate data partitioning, 

preparation and mining phase, respectively. In Line 3 and 4 of Figure IV-13, FSM-

H performs the filtering and partitioning of the input dataset and writes each 

partition and write in the HDFS.  

 

Figure IV-13 : Data partitioning Phase. 

In line 1-7 of Figure IV-14 the mappers generate static data structure along 

with emit key-value pair of all single length pattern to reducer. Since all patterns 

are frequent, Reducers just relay the input key, value pair to the output file in 

HDFS. 
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Figure IV-14 : Preparation Phase. 

 In Line 1-3 of Mapper mining function in Figure IV-15, the mappers 

reconstruct the pattern object of size 𝑘 a long with the static data structures and 

generates the candidates from the current pattern. In Line 4-9, the mappers 

iterate over all possible candidates of size 𝑘 +  1 and on success in isomorphism 

and occurrence list test mappers emit the key-value pair for the reducer. Reducer 

mining function computes the aggregate support (Line 2) of the pattern and if the 

pattern is frequent, reducers write back the key, value pairs to HDFS for the 

mappers of the next iteration. 
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Figure IV-15 : Mining Phase. 

IV.10 Implementation Details: 

 We used Cloudera’s open source Distribution with Hadoop CDH 15-4, that 

include Hadoop version 2-6-0, as a platform for running the application. The 

baseline mining algorithm is written in java, as well as the map and the reduce 

function for both the preparation and the mining phases. A custom input reader 

is used instead of the default ones that came built-in with Hadoop. 

To improve the execution time data is compressed when written to HDFS. we 

used global counters provided by Hadoop to monitor and track the stopping point 

of the iterative mining task. 

IV.10.1 Map reduce job configuration:  

Success of the job depends on the accurate configuration of it, and since the 

type of the value that is read by a mapper and emit by the reducer is ByteWritable, 

FSM-H sets the input and output format of each job as SequenceFileInputFormat 
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and SequenceFileOutputFormat respectively. Another job property, named 

mapred.task.timeout also need to be set properly for better execution of FSM-

H. This parameter controls the duration for which the master node waits for a 

data node to reply. If the mining task that FSM-H commence is computationally 

demanding, the default timeout which is 10 minutes may not be enough. To be on 

the safe side, FSM-H sets the timeout of the job to 5 hours (300 minutes). FSM-H 

also sets the mapred.output.compress property to true. This configuration lets 

the output of a MapReduce job to be compressed which eventually decreases 

network load and improves the overall execution time. The codec that is used for 

compression is BZip2Codec instead of the default one. BZip2Codec is shipped 

with Hadoop. FSM-H also increases the heap size of a job using 

mapred.child.java.opts property. The same configuration is used for both 

the preparation and mining phase of FSM-H. 

A list of some of the main configuration options that may enhance the 

performance of the execution of jobs could be found in the appendix. 
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Key Points – Chapter 04 : 

 

 We introduced the chapter by defining the general formulation of FSM 

problem where the input data is a database containing small to medium 

sized transactions (graphs). 

 We highlighted the theoretic approaches adopted along with the different 

data structures that is maintained by FSM-H in order to perform 

candidate generation, isomorphism checking and support counting. 

 We highlighted the pseudo code for the mapper and the reducer of FSM-

H with respect to a configuration where we have a fully distributed 

system. 

 We presented the general framework and execution flow of FSM-H for 

instance partition, preparation and mining phases. 

 We concluded the chapter by presenting some tuning   parameter that 

once configured allow for best execution of the jobs. 
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V. Chapter 05: 

Experiments and Results 

V.1 Experiments: 

In this Section we present experimental results that demonstrate the 

performance of FSM-H for solving frequent subgraph mining task where we have 

a graph database containing a collection of small – to – medium sized graphs. 

We have done several experiments on real datasets, taking into account a 

variation of multiple factors (number of data nodes, number of mappers, reducers, 

…. etc.). 

For each test results we analyses it and demonstrate the efficiency of FSM-H. 

V.2 Experimental setup:  

V.2.1 Datasets:  

In chemistry graphs can represent different chemical objects: molecules, 

reactions, crystals, polymers, clusters, etc. The common feature of chemical 

systems is the presence of sites and connections between them. Sites may be atoms, 

electrons, molecules, molecular fragments, groups of atoms, intermediates, 

orbitals, etc. The connections between sites may represent bonds of any kind, 

bonded and no bonded interactions, elementary reaction steps, rearrangements, 

van der Waals forces, etc. Chemical systems may be depicted by chemical graphs 

using a simple conversion rule: 

Site     vertex 

        Connection   edge 

A special class of chemical graphs are molecular graphs. Molecular graphs are 

chemical graphs which represent the constitution of molecules. They are also 

called constitutional graphs. In these graphs vertices correspond to individual 

atoms and edges to chemical bonds between them. 
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So as input we use six real-world graph datasets which are taken from an 

online source that contains graphs extracted from the PubChem website.  

PubChem is an open chemistry database at the National Institutes of Health 

(NIH). It provides information on biological activities of small molecules and the 

graph datasets from PubChem represent atomic structure of different molecules.  

Table V-1: highlight some statistics about these real world graph datasets: 

Table V-1 : statistics of real life graph datasets. 

Name of Transaction 

Graph dataset. 

Assay 

ID 

# Transactions 

(Graphs) 

Tumor Description Average size 

of each graph 

SN12C 145 40004 Renal 27.7 

NCI-H23 1 40353 Non-small Cell 

Lung 

28.6 

OVCAR-8 109 40516 Ovarian 28.1 

SF-295 47 40271 Central Nerv syst 28.0 

YEAST 167 79601 Yeast Anticancer 22.8 

 

 Name of Transaction Graph dataset: refer to the name of the anticancer 

screen test, the graphs in each dataset represent chemical compounds that 

were exposed to some test cell lines in laboratory.  

 Assay id: refers to the bioassay ID as it is identified in the PubChem 

database. 

 # Transactions (Graphs): represent the number of transactions (graphs) 

in each dataset. 

 Tumor description: Refers to the cancer type that these chemical 

compounds (graphs in our case) were tested against. 

 Average size of each graph: refers to the average size (number of edges) 

of graphs in each dataset. 

Rq: the graphs in each dataset (chemical compounds) are grouped into 

two categories depending on the bioactivity outcome: 

https://www.nih.gov/
https://www.nih.gov/
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 Active: means that the tested chemical molecule (compound) 

has an active outcome with respect to the objective of the test 

which is in general the growth inhibition of the tumor in the 

cells tested. 

 Inactive: means that the tested chemical compound didn’t 

present any activity against the cell that it was exposed to. 

Performing frequent subgraph mining against these chemical graph datasets 

could reveal the main component (frequent subgraph: frequent compounds) that 

are shared amongst them, which could be of huge value because these frequent 

patterns help in the fabrication of drugs for the treatment of malignant, 

or cancerous diseases. 

V.2.1.1 Graph representation in machine:  

Each graph from the graphs mentioned in Table V-1 and their mappings to 

chemical structures are represented and stored in text files as captured in the 

figure V-1 below: 

 

 

 

 

 

 

 (a): represent a graph (a chemical compound): 

o t # 0: refers to transaction number 0 (first graph in the dataset). 

o v 0 0: vertex 0 has a label 0 (labels here correspond to atoms 

example: O, C, H, Br, …. etc. 

(a) (b) 

Figure V-1 : (a) Exerpt from the yeast graph dataset file.                            

(b) Exerpt from the mapping text file that correspond to yeast graph dataset. 

 

  

https://www.britannica.com/science/cancer-disease
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o e 1 13 1: there is an edge between vertex 0 and vertex 13 that has 

a label of 1. 

o Labels can be represented by an integer 1 or 2, labels define the type 

of the bond that exist between atoms(vertexes) 

 1: define simple bond between elements(atoms). 

 2: define double bonds between two elements (atoms) 

 (b): correspond to an excerpt from the file mapping.txt that store the 

mapping of chemical elements(atoms) to an integer id:  for example, C 3 in 

the file means that C (carbon) has an integer id of 3, so whenever we find 

in the graph dataset a vertex with label 3 we know that it represents C 

(carbon) and from this observation we can define the chemical structure 

that we are dealing with, that is represented here as a transaction.  

 It is important to note here that mapping.txt does not include the Hydrogen 

atom and thus the type of graphs that we are dealing with are called 

“hydrogen-suppressed molecular graphs”, example of such graphs are 

presented in the example below. 

Example: 

 

Figure V-2 : Example of two hydrogen-suppressed molecular graphs depicting 

butane and cyclobutane. 

 

.  
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V.2.2 Implementation platform:  

We used Cloudera’s distribution with Hadoop CDH 15-4, that include Hadoop 

version 2.6.0 as a platform for running the program, note also that all experiments 

were conducted on real Cluster composed of four nodes, running each of them 

Cent-OS version 7.0. 

Each of the four nodes is equipped with 12 Core Xeon, 2.5 Ghz CPU and having 

125 Gb of memory and 1TB or storage space. 

Note that for each of the tests (see next section) we keep each partition with 

approximately 100 graphs. And balances the graphs in each of them to be having 

approximately the same number of edges.  

V.3 Tests and Evaluations:    

V.3.1 Runtime of FSM-H for different minimum support: 

In this experiment, we analyze the runtime of FSM-H for varying minimum 

support threshold. We conduct this experiment for the real world datasets 

mentioned above. Here we fix the number of data nodes to 4 and keep 100 

transactions for each partition. and we observe the running time of FSM-H for a 

minimum support threshold that vary between 50 and 120 (with values 50, 70, 90 

and 120 respectively). In Figure V-3 (a-e) we show the result. As expected, the 

runtime decreases as minimum support threshold increases. In figure V-4(a-d), we 

show the overall running time of FSM-H distributed over “Map” and ”Reduce“ 

phases. We pick “yeast” and “SN12C” dataset for this experimentation. In all cases 

(different supports), the “Reduce” phase takes large time to execute than the 

”Map” phase. More precisely, the running time of “Reduce“ phase is approximately 

70% of overall running time. 
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Figure V-3 : Line Plot Showing the relationship between the minimum support 

threshold and the running time n minutes for (a) Yeast, (b) SN12C (c) OVCAR-8 

(d) NCI-H23 and (e) SF295. 
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Figure V-4 : Line Plot showing the relationship between the minimum support 

threshold and the running time of Map and Reduce phase of FSM-H in (a)(b) 

Yeast and (c)(d) SN12C 

V.3.2 Runtime of FSM-H for varying number of Reducers: 

The number of reducer plays an important role in the execution of MapReduce 

job in Hadoop. While writing data (output) in HDFS, a MapReduce job follows a 

convention of naming the output file with the key word “part”. Reducer count 

determines how many “part” files will be generated to hold the output of a job. If 

the number of reducer is set to 1, entire output will be written in a single file. Since 

FSM-H is an iterative algorithm, where output of the current job is used as an 

input of the next job, the number of reducer has a significant effect on the 

execution time of FSM-H. If we set reducer count to a small value then there will 

be fewer number of output files that are large in size; these large files will be a 

burden over the network when they are transferred between data nodes. 
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On the other hand, large number of reducers might create many output files 

of zero size (reducer is unable to output any frequent pattern for the next stage 

Mapper). These zero size output files will also become an overhead for the next 

stage mappers as these files will still be used as input to a mapper. Note that, 

loading an input file is costly in Hadoop. 

In this experiment, we measure the runtime of FSM-H for various 

configurations where we set the number of reducers to, 10, 20, 30 and 40 

respectively. We run the experiment on biological datasets for a minimum support 

threshold of 100 and we keep approximately 100 database graphs in each partition. 

Figure V-5 (a-b) shows the relationship between execution time and the 

number of reducers using bar charts. As we can see, 30 is the best choice for the 

number of reducers in our cluster setup. This finding is actually intuitive, because 

we have 4 data nodes each having 12 reduce slots (12 core processor), yielding 48 

processing units. So keeping a few units for system use and other services, 30 is 

the best choice for the number of reducers.  

 

Figure V-5 : Bar Plot showing the relationship between the number of Reducer 

and the running time of FSM-H in (a) Yeast (b) OVCAR-8.. 

V.3.3 Runtime of FSM-H on varying number of data nodes: 

In this experiment, we demonstrate how FSM-H’s runtime varies with the 

number of active data nodes (slaves). We use the Yeast dataset and 100 minimum 

support threshold and keep 100 database graphs in one partition. We vary the 

count of data nodes among 2, 3 and 4 and record the execution time for each of the 
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configurations. As shown in Figure V-6 (a) the runtime reduces significantly with 

an increasing number of data nodes. In Figure V-6 (b) we plot the speedup that 

FSM-H achieves with an increasing number of data nodes, with respect to the 2-

datanodes configuration. We can see that the speedup. 

 

Figure V-6 : Relationship between the execution time and the number of data 

nodes : (a) Bar plot shows the execution time (b) Line plot shows the speedup with 

respect to the execution time using 2 data nodes configuration . 

V.3.4 Effect of partition scheme on runtime: 

An important requirement for achieving the optimal performance of a Hadoop 

cluster is to find the appropriate number of mappers. In such a cluster, the setup 

and scheduling of a task wastes a few seconds. If each of the tasks is small and the 

number of tasks is large, significant amount of time is wasted for task scheduling 

and setup. So the experts advise that a mapper should execute for at least 40 

seconds Another rule of thumbs is that the number of mappers should not over-

run the number of partitions. 

In our cluster setup, we have 4 data nodes, each with 12 cores that allow us to 

have 48 mappers. Then, the perfect number of input partitions should be less than 

or equal to 48. But this rules do not fit well for frequent subgraph mining task. For 

example, the Yeast dataset has close to 80,000 graphs and if we make 30 partitions, 

then each partition ends up consisting of 2666 graphs. Since, frequent subgraph 

mining is an exponential algorithm over its input size, performing a mining task 
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over these many graphs generally becomes computationally heavy. In this case, 

the map function ends up taking more time than is expected. 

As a result, the optimal number of partitions for an FSM task should set at a 

much higher value (compared to a tradition data analysis task) so that the runtime 

complexity of the mappers reduces significantly. Note that, the higher number of 

partitions also increases the number of key-value pairs for a given pattern which 

should be processed by the reducers. However, the performance gain from running 

FSM over small number of graphs supersedes the performance loss due to the 

increased number of key-value pairs. This is so, because the gain in execution time 

in the mappers follows an exponential function, whereas the loss in execution time 

in the reducers and the data transmission over the network follow a linear 

function. 

On the other hand, selecting the number of partitions in such a way so that, 

each mapper gets to process only one transaction will not be an optimal choice. 

The reason is, average processing time of only one transaction will be much less 

than average task scheduling and setup time. 

We will see in this experiment that increment of the number of partitions has 

negative effects on overall running time. 

The following experiment validates the argument that we have made in the 

above paragraph. In this experiment, we run FSM-H on Yeast dataset for different 

number of partitions and compare their execution time. 

Figure V-7 shows the result using bar charts. The charts show that as we 

increase the partition count, the performance keeps improving significantly until 

it levels off at around 1000 partitions. When the partition count is 1561, there is a 

slight loss in FSM-H’s performance compared to the scenario when the partition 

count is 796. The strategy of finding the optimal number of partitions depends on 

the characteristics of input graphs that control the complexity of the mining task, 

such as the density, number of edges, number of unique labels for vertices and 

edges in an input graph and so on. 
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Figure V-7 : Bar plot showing the relationship between the partition count and the 

running time of FSM-H for Yeast dataset. 
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VI. Conclusion:  

The term “Big Data” refers to the large amounts of data in which traditional 

data processing procedures and tools would not be able to handle, data is 

constantly generated from various business and scientific fields, and this data data 

comes  in multiple forms : structured and unstructured. 

Contrary to much of the traditional data types, most of the Big Data is 

unstructured or semi-structured in nature, which requires different techniques 

and tools to process and analyze them. 

Graphs are common data structures used to represent / model real-world 

systems and the data associated with it. Graph Mining is one of the arms of Data 

mining in which voluminous complex data are represented in the form of graphs 

and mining is done to infer knowledge from them. This thesis was focused in the 

particular problem of frequent subgraph mining. 

Frequent sub graph mining or for short (FSM) is extensively used for graph 

classification, building indices and graph clustering purposes, the purpose of an 

FSM algorithm is to discover subgraphs that appears frequently in a set of graphs 

or a single large graph. 

The research goals of FSM  are directed at: (𝑖) effective mechanisms for 

generating candidate subgraphs (without generating duplicates) and (𝑖𝑖) how best 

to process the generated candidate subgraphs so as to identify the desired frequent 

subgraphs in a way that is computationally efficient and procedurally effective. 

The thesis presented a survey for the most FSM algorithms that are reported 

in the literature, and as in the case of frequent tree mining, candidate generation 

and support counting are key issues of such algorithms. Since subgraph 

isomorphism detection is known to be NP-complete, a significant amount of 

research work has been directed at various approaches for effective candidate 

generation. The mechanism employed for candidate generation is the most 

significant distinguishing feature of such algorithms. 

https://datafloq.com/read/?page=1&cat=31#%3Futm=internal
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In this thesis we studied a novel approach for frequent subgraph mining called 

FSM-H, this algorithm adopt an iterative map reduce based approach for mining 

graph datasets, this allows for load balancing and performance gains. 

We evaluated the effectiveness of FSM-H on real graph datasets in terms of 

the performance and the quality of results. 
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VIII. Appendices:  

01-The application as mentioned earlier in chapter 05 works on a four node 

Hadoop cluster, each machine runs CentOS v7 and Cloudera’s Distribution with 

Hadoop CDH V15.4. 

Each machine has a:  

12 Core Intel Xeon Processor. 

125 GB of RAM.  

And 1.5TB of disk storage.  

Yealding : 48Core for Processing, 500 GB of RAM in Total and 6TB of disk 

space across the Cluster. 

One of the node serves as the master as well as a slave node having the :  

NameNode, and RssourceManager and DataNode Roles. 

The remaining Three have each :  

DataNode and the NodeManager Roles. 

The following lists the /etc/hosts file on each of the machines:  

10.42.0.2  master.FSMCluster.local master  

10.42.0.3  datanode1.FSMCluster.local datanode1  

10.42.0.4  datanode2.FSMCluster.local datanode2 

10.42.0.5  datanode3.FSMCluster.local datanode3 

02-We used for the purpose of running the application: 32 Cores and a total of 

320 GB of RAM across the Cluster, and a 6TB of disk space for the purpose of DFS 

Storage, the remaining resources are reserved to the system overhead. 

Here are some configuration parameters (organized in groups) that were 

necessary for getting the best performance according to our setup :  
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A- YARN Container Configuration Property (Vcores) :  
 
Configuration parameter  Value 
yarn.scheduler.minimum-allocation-vcores 1 
yarn-scheduler.maximum-allocation-vcores 1 
yarn.scheduler.increment-allocation-vcores 1 

 
B- YARN Container Configuration Property (Memory): 
 

Configuration parameter  Value 
yarn.scheduler.minimum-allocation-mb 1024  
yarn.scheduler.maximum-allocation-mb 10240  
yarn.scheduler.increment-allocation-mb 512 

 
C-  MapReduce Configuration: 
 

Configuration parameter  Value 
yarn.app.mapreduce.am.resource.cpu-vcores 1 
yarn.app.mapreduce.am.resource.mb 10240 
ApplicationMaster Java Maximum Heap Size (available in CM) 10240 
mapreduce.map.cpu.vcores 1 
mapreduce.map.memory.mb 10240 
mapreduce.map.java.opts.max.heap 10240 
mapreduce.reduce.cpu.vcores 1 
mapreduce.reduce.memory.mb 10240 
mapreduce.reduce.java.opts 10240 
mapreduce.task.io.sort.mb 256 

 

 

  

  

 

 

 

 


